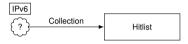
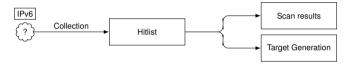
Target Acquired? Evaluating Target Generation Algorithms for IPv6

Lion Steger, Liming Kuang, Johannes Zirngibl Georg Carle, Oliver Gasser



Monday 12th June, 2023

Chair of Network Architectures and Services School of Computation, Information, and Technology Technical University of Munich


• The IPv6 address space is too large and sparse be scanned exhaustively.

- The IPv6 address space is too large and sparse be scanned exhaustively.
- Internet measurements rely on collections of active IPv6 addresses called hitlists.

- The IPv6 address space is too large and sparse be scanned exhaustively.
- Internet measurements rely on collections of active IPv6 addresses called hitlists.

- The IPv6 address space is too large and sparse be scanned exhaustively.
- Internet measurements rely on collections of active IPv6 addresses called hitlists.
- Often used by Target Generation Algorithms (TGAs) to generate more addresses.

- The IPv6 address space is too large and sparse be scanned exhaustively.
- Internet measurements rely on collections of active IPv6 addresses called hitlists.
- Often used by Target Generation Algorithms (TGAs) to generate more addresses.

- The IPv6 address space is too large and sparse be scanned exhaustively.
- Internet measurements rely on collections of active IPv6 addresses called hitlists.
- Often used by Target Generation Algorithms (TGAs) to generate more addresses.
- Can they represent the IPv6 Internet or are they biased?

Research Questions

Research Questions

Client devices, web servers, Internet infrastructure are all seen as part of a homogenous set.

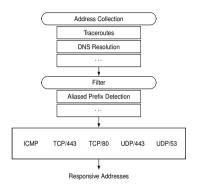
Are popular hitlists biased towards certain address types? How do different address types behave?

Research Questions

- Are popular hitlists biased towards certain address types? How do different address types behave?
 - \rightarrow We analyze the IPv6 Hitlist Service.

Research Questions

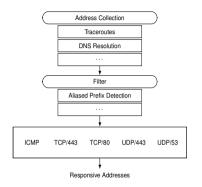
- Are popular hitlists biased towards certain address types? How do different address types behave?
 - → We analyze the IPv6 Hitlist Service.
- How do TGAs behave with biased input?


Research Questions

- Are popular hitlists biased towards certain address types? How do different address types behave?
 - \rightarrow We analyze the IPv6 Hitlist Service.
- How do TGAs behave with biased input?
 - \rightarrow We evaluate ten different TGAs.

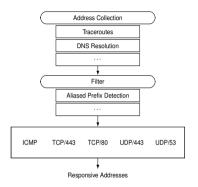
Research Questions

- Are popular hitlists biased towards certain address types? How do different address types behave?
 - \rightarrow We analyze the IPv6 Hitlist Service.
- How do TGAs behave with biased input?
 - → We evaluate ten different TGAs.
- What are the benefits of categorizing the hitlist contents?


• Service was introduced by Gasser et al. in 2018. 1

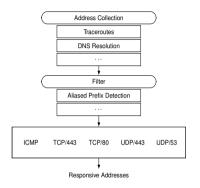
¹O. Gasser, Q. Scheitle, P. Foremski, et al., "Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists," in Proc. ACM Int. Measurement Conference (IMC), Boston, MA, USA, 2018. DOI: 10.1145/3278532.3278564

²J. Zirngibl, L. Steger, P. Sattler, et al., "Rusty clusters? dusting an IPv6 research foundation," in Proc. ACM Int. Measurement Conference (IMC), Nice, France, 2022. DOI: 10.1145/3517745.3561440


- Service was introduced by Gasser et al. in 2018.
- Collects more than 1.1B addresses from various sources.

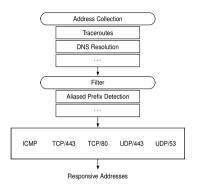
¹O. Gasser, Q. Scheitle, P. Foremski, et al., "Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists," in Proc. ACM Int. Measurement Conference (IMC), Boston, MA, USA, 2018. DOI: 10.1145/3278532.3278564

²J. Zirngibl, L. Steger, P. Sattler, et al., "Rusty clusters? dusting an IPv6 research foundation," in Proc. ACM Int. Measurement Conference (IMC), Nice, France, 2022. DOI: 10.1145/3517745.3561440


- Service was introduced by Gasser et al. in 2018.
- Collects more than 1.1B addresses from various sources.
- Runs addresses through filters and scans them on different ports.
 - TCP/80, TCP/443, UDP/53, UDP/443, ICMP.

¹O. Gasser, Q. Scheitle, P. Foremski, et al., "Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists," in Proc. ACM Int. Measurement Conference (IMC), Boston, MA, USA, 2018. DOI: 10.1145/3278532.3278564

²J. Zirngibl, L. Steger, P. Sattler, et al., "Rusty clusters? dusting an IPv6 research foundation," in Proc. ACM Int. Measurement Conference (IMC), Nice, France, 2022. DOI: 10.1145/3517745.3561440


- Service was introduced by Gasser et al. in 2018.
- Collects more than 1.1B addresses from various sources.
- Runs addresses through filters and scans them on different ports.
 - TCP/80, TCP/443, UDP/53, UDP/443, ICMP.
- Contains 6.7 M addresses responsive on at least one port.

¹O. Gasser, Q. Scheitle, P. Foremski, et al., "Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists," in Proc. ACM Int. Measurement Conference (IMC), Boston, MA, USA, 2018. DOI: 10.1145/3278532.3278564

²J. Zirngibl, L. Steger, P. Sattler, et al., "Rusty clusters? dusting an IPv6 research foundation," in Proc. ACM Int. Measurement Conference (IMC), Nice, France, 2022. DOI: 10.1145/3517745.3561440

- Service was introduced by Gasser et al. in 2018.
- Collects more than 1.1B addresses from various sources.
- Runs addresses through filters and scans them on different ports.
 - TCP/80, TCP/443, UDP/53, UDP/443, ICMP.
- Contains 6.7 M addresses responsive on at least one port.
- TGAs were employed by Zirngibl et al. in 2022.
 - · Generate new addresses from Hitlist addresses.
 - Used to increase coverage of the IPv6 address space by 168%.

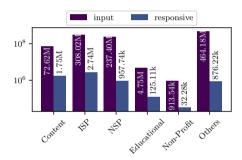
¹O. Gasser, Q. Scheitle, P. Foremski, et al., "Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists," in Proc. ACM Int. Measurement Conference (IMC), Boston, MA, USA, 2018. DOI: 10.1145/3278532.3278564

²J. Zirngibl, L. Steger, P. Sattler, et al., "Rusty clusters? dusting an IPv6 research foundation," in Proc. ACM Int. Measurement Conference (IMC), Nice, France, 2022. DOI: 10.1145/3517745.3561440

Category distribution

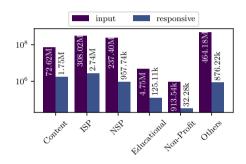
• Device type can only be estimated.

³https://www.peeringdb.com/


- Device type can only be estimated.
- Analysis of origin network.

³https://www.peeringdb.com/

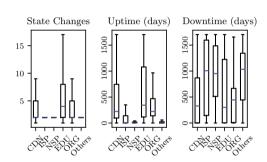
- · Device type can only be estimated.
- Analysis of origin network.
- Categorization via PeeringDB.³
 - Community-maintained database.
 - Offers categorization on AS-level.
 - Includes 11 categories, we chose 5.
 - Remaining categories combined to Others.


³https://www.peeringdb.com/

- Device type can only be estimated.
- Analysis of origin network.
- Categorization via PeeringDB.³
 - Community-maintained database.
 - Offers categorization on AS-level.
 - Includes 11 categories, we chose 5.
 - Remaining categories combined to Others.
- Category representation in Hitlist is not uniform.

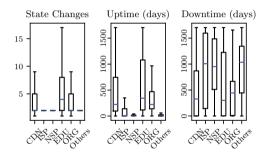
³https://www.peeringdb.com/

- Device type can only be estimated.
- Analysis of origin network.
- Categorization via PeeringDB. 3
 - Community-maintained database.
 - Offers categorization on AS-level.
 - Includes 11 categories, we chose 5.
 - Remaining categories combined to *Others*.
- Category representation in Hitlist is not uniform.
- Most frequent categories are ISP, CDN and NSP.

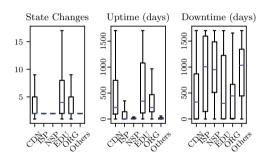

³https://www.peeringdb.com/

Category Behavior

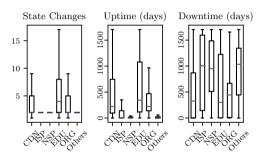
Category Behavior


Difference in temporal stability:

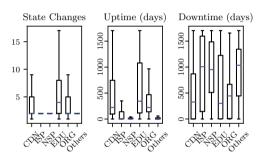
State changes denote a change in responsiveness.


Category Behavior

- State changes denote a change in responsiveness.
- Sum of down- and uptimes since inclusion in Hitlist.


Category Behavior

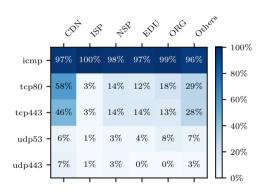
- State changes denote a change in responsiveness.
- Sum of down- and uptimes since inclusion in Hitlist.
- ISP addresses have one uptime around seven days.


Category Behavior

- State changes denote a change in responsiveness.
- Sum of down- and uptimes since inclusion in Hitlist.
- ISP addresses have one uptime around seven days.
- CDN addresses have longer average uptimes and a low number of downtimes.

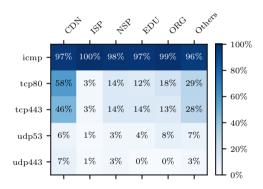
Category Behavior

- State changes denote a change in responsiveness.
- Sum of down- and uptimes since inclusion in Hitlist.
- ISP addresses have one uptime around seven days.
- CDN addresses have longer average uptimes and a low number of downtimes.
- Should be considered in longitudinal measurements.

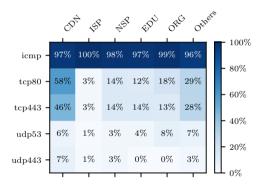


Category Behavior

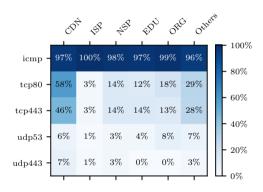
Category Behavior


Difference in port responsiveness:

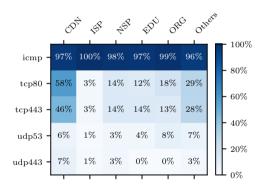
Response rate to each port probe per category.


Category Behavior

- Response rate to each port probe per category.
- Categories share high response rates to ICMP probes.


Category Behavior

- Response rate to each port probe per category.
- Categories share high response rates to ICMP probes.
- ISP addresses only have high response rates to ICMP.


Category Behavior

- Response rate to each port probe per category.
- Categories share high response rates to ICMP probes.
- ISP addresses only have high response rates to ICMP.
- CDN addresses have the highest response rates to TCP/80, TCP/443 and UDP/443.

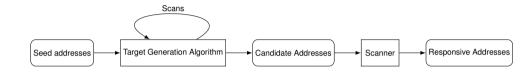
Category Behavior

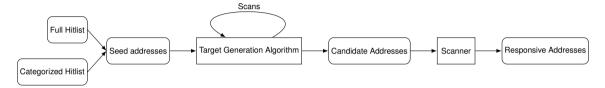
- Response rate to each port probe per category.
- Categories share high response rates to ICMP probes.
- ISP addresses only have high response rates to ICMP.
- CDN addresses have the highest response rates to TCP/80. TCP/443 and UDP/443.
- Port responses are important depending on use case.

Target Generation

Seed addresses

• Target Generation Algorithms (TGAs) discover patterns in known active addresses (seed data set).


- Target Generation Algorithms (TGAs) discover patterns in known active addresses (seed data set).
- Generate new potentially active addresses (candidate data set).


- Target Generation Algorithms (TGAs) discover patterns in known active addresses (seed data set).
- Generate new potentially active addresses (candidate data set).
- Candidates are scanned to check responsiveness.

- Target Generation Algorithms (TGAs) discover patterns in known active addresses (seed data set).
- Generate new potentially active addresses (candidate data set).
- Candidates are scanned to check responsiveness.

- Target Generation Algorithms (TGAs) discover patterns in known active addresses (seed data set).
- Generate new potentially active addresses (candidate data set).
- Candidates are scanned to check responsiveness.
- Some algorithms implement custom scanning to dynamically adapt generation.

- Target Generation Algorithms (TGAs) discover patterns in known active addresses (seed data set).
- Generate new potentially active addresses (candidate data set).
- Candidates are scanned to check responsiveness.
- Some algorithms implement custom scanning to dynamically adapt generation.
- We use the full Hitlist (default input) as well as the categorized Hitlist (specific input).

Target Generation Algorithms

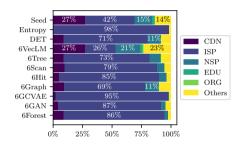
- We choose 10 open source algorithms from peer-reviewed publications.
- Methods include, language models, machine learning, graph theory.

Year	Authors	Name	Scanning	Ref
2016	Foremski et al.	Entropy/IP	Static Dynamic Dynamic Static Static Static	[3]
2019	Liu et al.	6Tree		[4]
2020	Song et al.	DET		[5]
2020	Cui et al.	6GCVAE		[6]
2021	Cui et al.	6VecLM		[7]
2021	Cui et al.	6GAN		[8]
2021	Hou et al.	6Hit	Dynamic	[9]
2022	Yang et al.	6Graph	Static	[10]
2022	Yang et al.	6Forest	Static	[11]
2023	Hou et al.	6Scan	Dynamic	[12]

Generation results

6Graph	6Scan	6VecLM	
and. resp.	cand. resp.	cand. resp.	
25M 3M	8M 4M	18k 2k	
2M 22k	10M 38k	84k 1k	
96k 15k	10M 946k	0 0	
 06M 5M	 6M 2M	 49k 4k	
	and. resp. 25M 3M 2M 22k 96k 15k	25M 3M 8M 4M 2M 22k 10M 38k 96k 15k 10M 946k	and. resp. cand. resp. cand. resp. 25M 3M 8M 4M 18k 2k 2M 22k 10M 38k 84k 1k 96k 15k 10M 946k 0 0

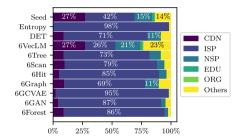
- Size of candidates (cand.) varies greatly from 18 k (or zero for 6VecLM) to 106 M.
- Size of candidate set depends on algorithm as well as input.


Default behavior

Target generation on default input:

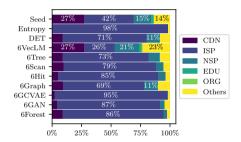
Default behavior

Target generation on default input:


Biased towards discovering more ISP addresses.

Default behavior

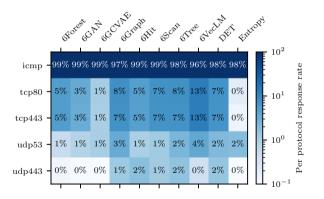
Target generation on default input:


- Biased towards discovering more ISP addresses.
- ISP addresses cointain more recognizable patterns.

Default behavior

Target generation on default input:

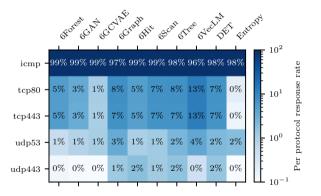
- Biased towards discovering more ISP addresses.
- ISP addresses cointain more recognizable patterns.
- All algorithms except 6VecLM generate a higher percentage of ISP addresses than contained in the seeds.


Default behavior

Port responses on default input:

Default behavior

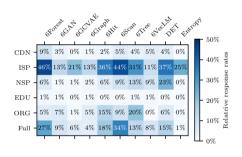
Port responses on default input:


Low port responses except for ICMP.

Default behavior

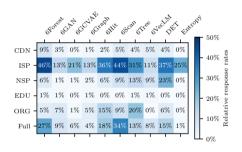
Port responses on default input:

- Low port responses except for ICMP.
- Default input introduces large scan overhead for some use cases.

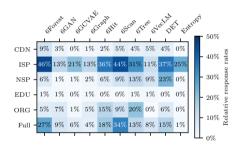


Input-dependent behavior

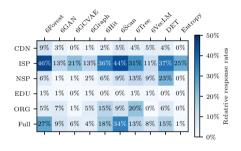
Input-dependent behavior


Category-dependent response rates:

Percentage of generated addresses per input responsive on at least one port.


Input-dependent behavior

- Percentage of generated addresses per input responsive on at least one port.
- TGAs have vastly different response rates.


Input-dependent behavior

- Percentage of generated addresses per input responsive on at least one port.
- TGAs have vastly different response rates.
- Dynamic algorithms have higher response rates.

Input-dependent behavior

- Percentage of generated addresses per input responsive on at least one port.
- TGAs have vastly different response rates.
- Dynamic algorithms have higher response rates.
- ISP input yields more responsive addresses.

• Network categories are not evenly distributed in the Hitlist service.

https://ipv6hitlist.github.io

- Network categories are not evenly distributed in the Hitlist service.
 - Bias towards ISP addresses.

https://ipv6hitlist.github.io

- Network categories are not evenly distributed in the Hitlist service.
 - Bias towards ISP addresses.
 - Categories show different behavior in port responses and temporal stability.

https://ipv6hitlist.github.io

- Network categories are not evenly distributed in the Hitlist service.
 - Bias towards ISP addresses.
 - Categories show different behavior in port responses and temporal stability.
 - ISP addresses are less stable than CDN addresses.

https://ipv6hitlist.github.io

- Network categories are not evenly distributed in the Hitlist service.
 - Bias towards ISP addresses.
 - Categories show different behavior in port responses and temporal stability.
 - ISP addresses are less stable than CDN addresses.
 - ISP responds only to ICMP, CDN best to TCP/80,443, UDP/443.

https://ipv6hitlist.github.io

- Network categories are not evenly distributed in the Hitlist service.
 - Bias towards ISP addresses.
 - Categories show different behavior in port responses and temporal stability.
 - ISP addresses are less stable than CDN addresses.
 - ISP responds only to ICMP, CDN best to TCP/80,443, UDP/443.
 - → Filtering input can avoid scanning overhead.

https://ipv6hitlist.github.io

- Network categories are not evenly distributed in the Hitlist service.
 - Bias towards ISP addresses.
 - Categories show different behavior in port responses and temporal stability.
 - ISP addresses are less stable than CDN addresses.
 - ISP responds only to ICMP, CDN best to TCP/80,443, UDP/443.
 - → Filtering input can avoid scanning overhead.
- TGAs by default are biased towards ISP addresses.

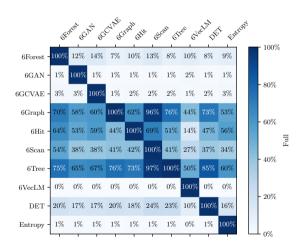
https://ipv6hitlist.github.io

- Network categories are not evenly distributed in the Hitlist service.
 - Bias towards ISP addresses.
 - Categories show different behavior in port responses and temporal stability.
 - ISP addresses are less stable than CDN addresses.
 - ISP responds only to ICMP, CDN best to TCP/80,443, UDP/443.
 - → Filtering input can avoid scanning overhead.
- TGAs by default are biased towards ISP addresses.
 - Default input leads to ICMP-biased responsiveness.

https://ipv6hitlist.github.io

- Network categories are not evenly distributed in the Hitlist service.
 - Bias towards ISP addresses.
 - Categories show different behavior in port responses and temporal stability.
 - ISP addresses are less stable than CDN addresses.
 - ISP responds only to ICMP, CDN best to TCP/80,443, UDP/443.
 - → Filtering input can avoid scanning overhead.
- TGAs by default are biased towards ISP addresses.
 - Default input leads to ICMP-biased responsiveness.
 - Pennana rates vary depending an input
 - Response rates vary depending on input.

https://ipv6hitlist.github.io


- Network categories are not evenly distributed in the Hitlist service.
 - Bias towards ISP addresses.
 - Categories show different behavior in port responses and temporal stability.
 - ISP addresses are less stable than CDN addresses.
 - ISP responds only to ICMP, CDN best to TCP/80,443, UDP/443.
 - → Filtering input can avoid scanning overhead.
- TGAs by default are biased towards ISP addresses.
 - Default input leads to ICMP-biased responsiveness.
 - Response rates vary depending on input.
 - → Filtering input can avoid biased candidate addresses.

https://ipv6hitlist.github.io

Backup

Cross-algorihm responsiveness

References

- [1] O. Gasser, Q. Scheitle, P. Foremski, Q. Lone, M. Korczyński, S. D. Strowes, L. Hendriks, and G. Carle, "Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists," in Proc. ACM Int. Measurement Conference (IMC), Boston, MA, USA, 2018. DOI: 10.1145/3278532.3278564.
- [2] J. Zirngibl, L. Steger, P. Sattler, O. Gasser, and G. Carle, "Rusty clusters? dusting an IPv6 research foundation," in Proc. ACM Int. Measurement Conference (IMC), Nice, France, 2022. DOI: 10.1145/3517745.3561440.
- [3] P. Foremski, D. Plonka, and A. Berger, "Entropy/IP: Uncovering Structure in IPv6 Addresses," in Proc. ACM Int. Measurement Conference (IMC), Santa Monica, California, USA, 2016. DOI: 10.1145/2987443.2987445.
- [4] Z. Liu, Y. Xiong, X. Liu, W. Xie, and P. Zhu, "6Tree: Efficient dynamic discovery of active addresses in the IPv6 address space," Computer Networks, vol. 155, May 2019. DOI: 10.1016/j.comnet.2019.03.010.
- [5] G. Song, J. Yang, Z. Wang, L. He, J. Lin, L. Pan, C. Duan, and X. Quan, "DET: Enabling Efficient Probing of IPv6 Active Addresses," IEEE/ACM Transactions on Networking, vol. 30, no. 4, Aug. 2022. DOI: 10.1109/tnet.2022.3145040.
- [6] T. Cui, G. Gou, and G. Xiong, "6GCVAE: Gated Convolutional Variational Autoencoder for IPv6 Target Generation," in Advances in Knowledge Discovery and Data Mining, Springer International Publishing, 2020. DOI: 10.1007/978-3-030-47426-3_47.
- [7] T. Cui, G. Xiong, G. Gou, J. Shi, and W. Xia, "6VecLM: Language Modeling in Vector Space for IPv6 Target Generation," in Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track, Springer International Publishing, 2021. DOI: 10.1007/978-3-030-67667-4_12.

References

- [8] T. Cui, G. Gou, G. Xiong, C. Liu, P. Fu, and Z. Li, "6GAN: IPv6 Multi-Pattern Target Generation via Generative Adversarial Nets with Reinforcement Learning," in Proc. IEEE Int. Conference on Computer Communications (INFOCOM), IEEE, May 2021. DOI: 10.1109/infocom42981.2021.9488912.
- [9] B. Hou, Z. Cai, K. Wu, J. Su, and Y. Xiong, "6Hit: A Reinforcement Learning-based Approach to Target Generation for Internet-wide IPv6 Scanning," in Proc. IEEE Int. Conference on Computer Communications (INFOCOM), IEEE, May 2021. DOI: 10.1109/infocom42981.2021.9488794.
- [10] T. Yang, B. Hou, Z. Cai, K. Wu, T. Zhou, and C. Wang, "6Graph: A graph-theoretic approach to address pattern mining for Internet-wide IPv6 scanning," Computer Networks, vol. 203, Feb. 2022. DOI: 10.1016/j.comnet.2021.108666.
- [11] T. Yang, Z. Cai, B. Hou, and T. Zhou, "6Forest: An Ensemble Learning-based Approach to Target Generation for Internet-wide IPv6 Scanning," in Proc. IEEE Int. Conference on Computer Communications (INFOCOM), IEEE, May 2022. DOI: 10.1109/infocom48880.2022.9796925.
- [12] B. Hou, Z. Cai, K. Wu, T. Yang, and T. Zhou, "6Scan: A High-Efficiency Dynamic Internet-Wide IPv6 Scanner With Regional Encoding," IEEE/ACM Transactions on Networking, 2023. DOI: 10.1109/tnet.2023.3233953.