TMA Conference 2023 Napoli, Italy

Live Long and Prosper: Analyzing Long-Lived MOAS Prefixes in BGP

Presenter: Khwaja Zubair Sediqi

29.June.2023

Khwaja Zubair Sediqi

Max Planck Institute for Informatics

zsediqi@mpi-inf.mpg.de

Anja Feldmann

Max Planck Institute for Informatics

anja@mpi-inf.mpg.de

Oliver Gasser

Max Planck Institute for Informatics

oliver.gasser@mpi-inf.mpg.de

Introduction

We are intersted in Long-lived MOAS prefixes

Problem: How to differentiate between both cases?

Motivation

IP to AS mapping -> Geolocating problem

MOAS prefix usage for anycast services

Characteristics and users of MOAS prefixes

Identifying Long-Lived MOAS Prefixes

Daily RIBs from RIPE-RIS and Routeviews RCs

Measure the maximum lifetime of MOAS prefixes for six years (2017 – 2023)

Kneedle algorithm¹ to determine the "elbow", maximum curvature value, within the lifetime of all MOAS prefixes

30 days threshold 1.0 0.8 0.8 0.4 0.2 0.0 1 30 60 120 180 240 300 365+ Max Lifetime (days)

^{1.} Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, "Finding a "Kneedle" in a Haystack: Detecting Knee Points in System Behavior," in *IEEE ICDCS*, 2011.

All MOAS and Long-live MOAS

Huge Networks - DDoS Mitigation (AS264409) 143k prefixes

Angola Cables (AS37468) 90k prefixes

IPv4 MOAS increased from 1% to 2%

PREFIXES AND ORIGINS

RPKI Status of MOAS Prefixes

All Valid Origins increased 5% - 40%

MOAS -> not prefix hijacks

Not all origin ASes entered information in the RPKI database -> Partial Valid

Less than 1% All Invalid Origins

Merger of TTNet and Turk Telekomunikasyon

CIDR Sizes

Jazztel acquired by Orange (Orange Spain)

TTNet and Turk Telekomunikasyon

ASes use fine-granular CIDR sizes MOAS

Merger and acquisition lead to MOAS prefixes

acquisition of KPN International by GTT

Minimum and Maximum Visibility

For 99% of MOAS one Prefix Origing pair is visible by 100+ RC peers

For 40% MOAS at least one PO pair is visible only at one RC peer

One PO visible at 100 another barely visible Hint: MOAS not mainly used for anycast

Anycast in MOAS Prefixes

Using bgp.tools anycast dataset

0.9% of IPv4 and 6.3% of IPv6 MOAS prefixes are anycast prefixes

Most of anycasted MOAS use more than ten origin Ases

A and J root DNS servers, use MOAS prefixes with a /24 CIDR size

USERS AND USAGE OF MOAS PREFIXES

Big players in the Internet

11 out of 16 Hypergiants¹ use MOAS prefixes

- 1. Verizon
- 2. Netflix
- 3. Google

to improve their network's resilience, performance, and quality of experience

BGP Relationship of MOAS Prefix Origin ASes

Using CAIDA datasets

No relationship for 50% of origin AS pairs

Half of all origin AS pairs are C2P/P2C

Many MOAS prefixes are not related to sibling ASes

Business Type of MOAS Users

Using ASdb dataset

IT company pairs with other business types

Same company type for both origins being most common

40% of the cases, both MOAS origins fall into the "IT" category

Conclusion

Analyzed long-lived MOAS prefixes for a period of six years Majority of MOAS prefixes

- valid ROV state in the RPKI
- mergers and acquisitions of companies
- customer-provider relationship
- users are IT companies

Rarely used for anycast purposes

We recommend network operators clean up the extra MOAS prefixes

Live Long and Prosper: Analyzing Long-Lived MOAS Prefixes in BGP

Khwaja Zubair Sediqi

Max Planck Institute for Informatics
zsediqi@mpi-inf.mpg.de

Anja Feldmann

Max Planck Institute for Informatics
anja@mpi-inf.mpg.de

Oliver Gasser

Max Planck Institute for Informatics
oliver.gasser@mpi-inf.mpg.de

Abstract—BGP exchanges reachability information in the form of prefixes, which are usually originated by a single Autonomous System (AS). If multiple ASes originate the same prefix, this is referred to as a Multiple Origin ASes (MOAS) prefix. One reason for MOAS prefixes are BGP prefix hijacks, which are mostly short-lived and have been studied extensively in the past years. In contrast to short-lived MOAS, long-lived MOAS have remained largely understudied.

In this paper, we focus on long-lived MOAS prefixes and perform an in-depth study over six years. We identify around 24k long-lived MOAS prefixes in IPv4 and 1.4k in IPv6 being announced in January 2023. By analyzing the RPKI status we find that more than 40% of MOAS prefixes have all origins registered correctly, with only a minority of MOAS having invalid

BACKUP SLIDES

Lifetime Analysis

Six months data from RC projects

Lifetime = duration a prefix is seen as a MOAS continuously

We use the one day sensitivity threshold

Using More Than One RIB per Day

Three RIBS per day does not increase the Max Lifetime of MOAS prefixes

How consistently prefixes are visible as MOAS?

 Observatbility = number of days out of the total days, when a prefix is observed as a MOAS ~ 80% of MOAS have > 95% observability

MOAS Growth

IPv4 long-lived MOAS prefixes increase from 10k in 2017 to over 24k prefixes at 2023

Number of origin ASes growing by about 50% in the same time period.

Origin ASes

Few ASes announce large numbers of MOAS

60% of origin AS sets announce single MOAS

95% IPv4 and 88% IPv6 MOAS

have 2 origins ASes

Visibility Across Route Collector Peers

MOAS PO pairs around 50% visible in 100+ peers

Followed by visibility of 3 or fewer peers

