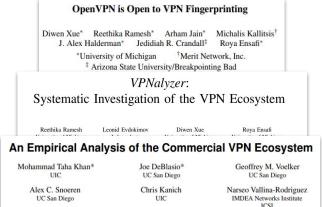
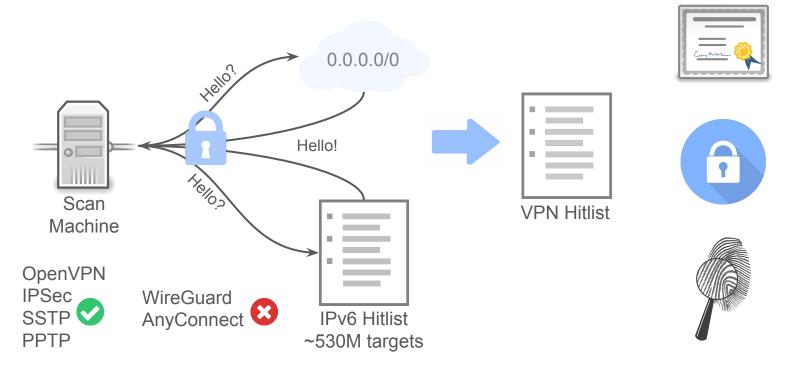
Characterizing the VPN Ecosystem in the Wild

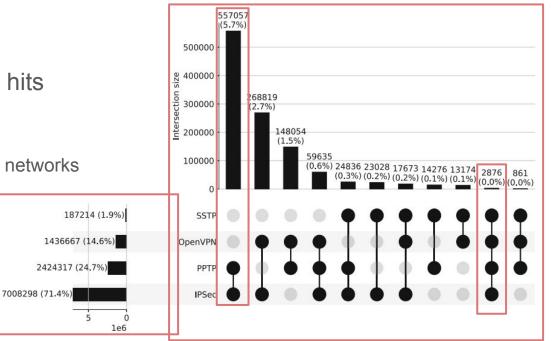

Aniss Maghsoudlou¹, Lukas Vermeulen¹, Ingmar Poese², Oliver Gasser¹

¹ Max Planck Institute for Informatics ² Benocs GmbH

Motivation


- Rise of remote work during the pandemic \rightarrow VPN
- Previous work investigate commercial VPNs
- VPN servers ecosystem in the wild
 - Active measurement: server detection & TLS security
 - Passive measurement: VPN traffic detection

How can we characterize the <u>VPN server</u> ecosystem <u>in the wild</u>?


Active Measurement - Methodology

VPN Server Detection

- IPv4: 9.8M hits, IPv6: 2.2K hits
- AS analysis:
 - most top ASes are large ISP networks

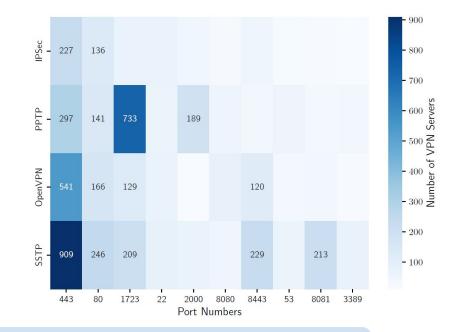
- Only a few VPN servers with more than one protocol
- Low IPv6 adoption

TLS Certificate Analysis

OpenVPN		SSTP	
Expired:	6,080 (3.8%)	Expired:	13,370 (9%)
Self-signed:	109,825 (69%)	Self-signed:	34,725 (24%)
CA organizations:	14,548	CA organizations:	2,502
Unique certificates:	129,143	Unique certificates:	104,988
Total Certificates:	158,705	Total Certificates:	143,517

Substantial amount of self-signed certificates

TLS Vulnerability Analysis


	Requirements	OpenVPN	SSTP
RC4	RC4	32,294 (7%)	84,892 (31%)
Heartbleed	OpenSSL Heartbeat	232	10
Poodle	SSL 3.0	7,005 (1.5%)	24,917 (6%)
FREAK	RSA_EXPORT	31	1
Logjam	DHE/512-bit export	8	0
DROWN	SSLv2	0	0
ROBOT	TLS_RSA	95,301 (20%)	174,986 (74%)
Raccoon	TLS_DH	0	0

Only a few outliers for more critical vulnerabilities

VPN Server Fingerprinting

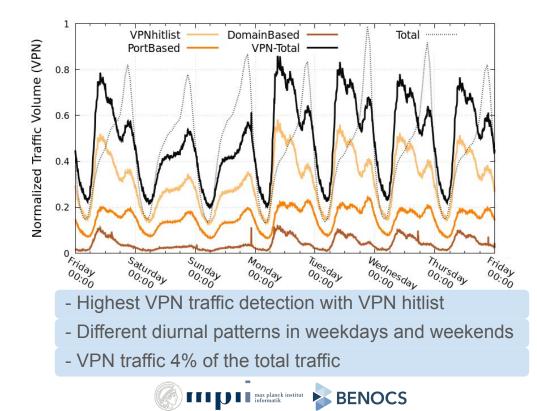
- Nmap OS detection:
 - 609 guesses for 1K servers/protocol
 - Linux as most frequent OS
 - More hardware guesses for PPTP
 - More Microsoft products for SSTP
- Nmap port scan

Large number of VPN servers seem to also be Web servers

Passive Measurement - Methodology

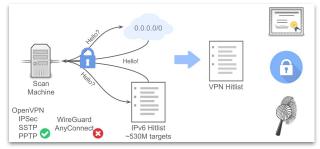
- Traffic volume for the detected IPs (VPN Hitlist)
- Comparison with the existing approach by *Feldmann et al.**:
 - Port-based: port numbers used by VPN protocols
 - Domain-based: domains with "vpn" and without "www."
- Netflow data from a large European ISP
- Domain names of the detected IPs
 - Captured DNS records at resolvers
 - Reverse DNS look-ups

* Anja Feldmann et al. (2020) The Lockdown Effect: Implications of the COVID-19 Pandemic on Internet Traffic. IMC'20.

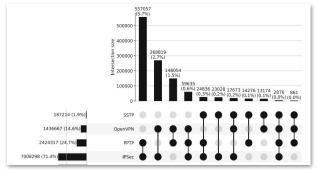


VPN Traffic Detection

- Domain names found for 23% of IPs in VPN hitlist
- 5 commercial VPN providers in top 10 domains
- Wireguard port 51820 and 1337 observed in VPN hitlist
 - Co-existence of multiple VPN protocols on a server

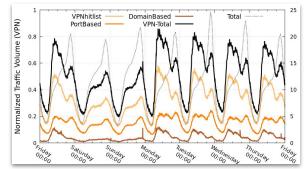


VPN Traffic Detection



Summary

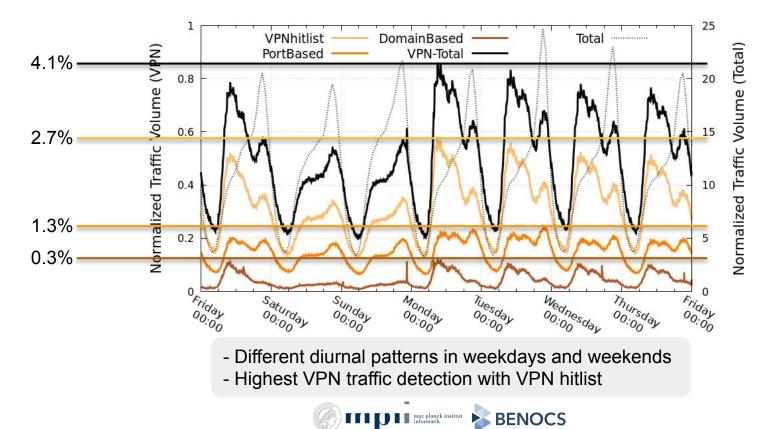
Characterizing the VPN server ecosystem in the wild.


VPN servers in the wild detected for 4 VPN protocols.

SSTP servers more vulnerable to TLS attacks.

	Requirements	OpenVPN	SSTP
RC4	RC4	32,294 (7%)	84,892 (31%)
Heartbleed	OpenSSL Heartbeat	232	10
Poodle	SSL 3.0	7,005 (1.5%)	24,917 (6%)
FREAK	RSA_EXPORT	31	1
Logjam	DHE/512-bit export	8	0
DROWN	SSLv2	0	0
ROBOT	TLS_RSA	95,301 (20%)	174,986 (74%)
Raccoon	TLS_DH	0	0

Our approach detects the most VPN traffic.


VPN hitlist, analysis code, custom scan modules:

vpnecosystem.github.io

Back-up: Passive Measurement Results

Back-up: Detected VPN Protocols

IPv4			IPv6	
VPN protocol	Detected servers	-	VPN protocol	Detected servers
SSTP	187,214	-	SSTP	949
OpenVPN	2,424,317		OpenVPN	2,070
PPTP	1,436,667		TOTAL	2,221
IPSec	7,008,298			
TOTAL	9,817,450	-		

Back-up: AS Analysis

Back-up: Top 10 ASes

IPv4

AS number	AS name	VPN servers	A
4134	ChinaNet	515,830	7
7922	Comcast	356,327	6
1221	Telstra	257,821	1
3320	Deutsche Telekom	242,433	7
4766	Korea Telecom	228,863	9
4713	NTT Communications	145,286	9
7018	AT&T	137,698	1
4837	China Unicom	133,861	2
3462	HiNet	119,612	7
20115	Charter Communications	97,109	6

IPv6

AS number	AS name	VPN servers
7922	Comcast	183
63949	Akamai	159
12322	Proxad Free SAS	138
7506	GMO Internet Group	89
9009	M247 Ltd	63
9370	Sakura Internet Inc	58
14061	DigitalOcean	55
2516	KDDI Corporation	54
7684	Sakura Internet Inc	39
680	DFN-Verein	36

Back-up: The Effect of Not Using SNI

- Re-run TLS scans with SNI and domains from rDNS resolution
 - 3% mismatches for OpenVPN, 5.5% mismatches for SSTP
- Re-run without SNI and compare again
 - 3 times fewer mismatches for OpenVPN, less than half for SSTP

- overall, less than 1% of certificates are affected - effect is negligible

Back-up: OpenVPN Limitations and Protocol Versions


- Sent out requests with HMAC requiring pre-shared key
 - Only 84 out of 1.4M servers accepted our random HMAC
- Follow-up scans: suggest insecure key exchange method
 - No server accepted the key-method
 - ~6,500 responded with secure key exchange method

we can only detect a subset of OpenVPN ecosystem
insecure key exchange is truly deprecated

Back-up: Sample Websites for Some VPN Servers

Many servers only display generic default pages

