FlowDNS:
Correlating Netflow and DNS Streams at Scale

Aniss Maghsoudlou*, Oliver Gasser*, Ingmar Poese^, Anja Feldmann*
*Max Planck Institute for Informatics, ^ BENOCS GmbH

CoNEXT 2022
Why Correlating?

- ISPs want to know the services used in their traffic
 - Better negotiation knowing the traffic volume of a service
 - Services cannot be distinguished only by IP if served by CDNs
 - Detect spam traffic
- ISPs gather flow information of their network traffic
- Flow information do not contain domain names
- Flow information + service/domain name
FlowDNS

⇒ Idea: combine Netflow and DNS live streams

⇒ Challenges:
 ● DNS records
 ● TTL
 ● CNAME Chains
 ● Infrastructure
 ● Live streams buffer overload
 ● Limited memory resources
FlowDNS Architecture

- FillUpWorker
 - DNS Stream
 - In-Memory DB
 - IP-NAME
 - FillUp
 - LookUp
 - Write
 - ClearUp

- LookUpWorker
- WriteWorker
 - Netflow Stream
 - In-Memory DB
 - NAME-CNAME
Buffer Rotation

Active Hashmap
- IP1 -> Name1
- IP2 -> Name2
- IP3 -> Name3

Inactive Hashmap

Active Hashmap
- IP4 -> Name4
- IP5 -> Name5
- IP6 -> Name6

Inactive Hashmap
- ...

Active Hashmap
- IP4 -> Name4
- IP5 -> Name5
- IP6 -> Name6

Inactive Hashmap
- IP1 -> Name1
- IP2 -> Name2
- IP3 -> Name3
FlowDNS Architecture

DNS Stream

FillUpWorker

IP-NAME Hashmap (Active)
(_inactive)
(Active)

NAME-CNAME Hashmap (Active)
(inactive)

LookUpWorker

WriteWorker

LookUp
Write
ClearUp
Evaluation

- Live Netflow and DNS streams from a large European ISP
- Removing mechanisms 1 by 1
 - Main, NoRotation, NoClearUp, NoLong [, NoSplit in paper]
- Memory usage
- DNS-Netflow Correlation rate
Evaluation

- Clear-up mechanism is necessary
- Buffer rotation increases CR with memory overhead
- Long Hashmaps increase CR without much overhead

Correlation Rate (CR) = \frac{Correlated Traffic Volume}{Total Traffic Volume}
Use Cases

- Netflow and DNS data from a large European ISP
- Service-based network provisioning (1 week)
- Spam traffic detection (1 day)
Use Case: Service-based Network Provisioning

- Filtered traffic based on domain names of Service S1
- Correlated with BGP info
- Insights on how traffic is distributed, e.g. during peak hours

- S1 originated mostly by 2 ASes
- Only AS2 carries the peak on Sep. 29th
Use Case: Spam Traffic Detection

- Checking correlated traffic with
 - Spamhaus DBL domains
 - RFC 1035: implementation and specification of domain names

Limited #domains contribute to a large fraction of the traffic.
Lessons learned

- Applying the exact TTLs leads to buffer overload and higher memory usage
- CNAME chain length needs to be limited
- Several splitting mechanisms may be used, depending on the data
- Buffer rotation and long hashmaps help increasing the correlation rate
Summary

FlowDNS combines DNS and flow data.

Buffer rotation increases correlation rate.

FlowDNS enables service-based network provisioning.

FlowDNS enables spam traffic detection.

github.com/maganiss/FlowDNS
Back-up Slides
Simple ClearUp

Active Hashmap

IP1 -> Name1
IP2 -> Name2
IP3 -> Name3

1 HOUR

Active Hashmap

IP4 -> Name4
IP5 -> Name5
IP6 -> Name6
Evaluation

- 88% IPs map to only one domain name
 - min. Accuracy: 88%
- 1 out of every 20 DNS packets is sent to a public DNS resolver
 - 95% coverage
Why not other approaches

- Passive DNS correlation
 - Expired DNS records
 - CDN usage and frequent change of IP-name mapping

- SDN and P4
 - Possible architectural modifications needed
 - Domain name restrictions
 - Encrypted traffic
Specific AS showing up occasionally
TTL

ECDF

TTL

Record Type

- A
- AAAA
- CNAME
CNAME chain length

![Graph showing the ECDF of CNAME Chain Length]

- **ECDF** vs. **CNAME Chain Length**

The graph illustrates the cumulative distribution of CNAME chain lengths, with the x-axis representing the chain length and the y-axis representing the ECDF (Empirical Cumulative Distribution Function). The data shows a steady increase in ECDF values as the chain length increases, leveling off at a value close to 1.00 for longer chain lengths.
Why Spamhaus DBL

- Expiry window of 14 days
- Free (but rate-limited)
Why Correlating SrcIP?
FlowDNS

- Idea: combine Netflow and DNS live streams

- Challenges:
 - Loss on the streams
 - TTL
 - Limited memory resources
 - CNAME chains

- Our approach:
 - Multiple queues to read/write
 - Splitting the DNS records into different hashmaps
 - Clear-up mechanism: Buffer rotation
 - Limiting CNAME chain lookups