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Abstract

Since the standardization of IPv6 in 1998, both versions of the Inter-
net Protocol have coexisted in the Internet. Clients usually run algo-
rithms such as Happy Eyeballs, to decide whether to connect to an
IPv4 or IPv6 endpoint for dual-stack domains. To identify whether
two addresses belong to the same device or service, researchers have
proposed different forms of alias resolution techniques. Similarly,
one can also form siblings of IPv4 and IPv6 addresses belonging to
the same device. Traditionally, all of these approaches have focused
on individual IP addresses.

In this work, we propose the concept of “sibling prefixes”, where
we extend the definition of an IPv4-IPv6 sibling to two IP prefixes—
one IPv4 prefix and its sibling IPv6 prefix. We present a technique
based on large-scale DNS resolution data to identify 76k IPv4-IPv6
sibling prefixes. We find sibling prefixes to be relatively stable over
time. We present SP-Tuner algorithm to tune the CIDR size of
sibling prefixes and improve the perfect match siblings from 52%
to 82%. For more than half of sibling prefixes, the organization
names for their IPv4 and IPv6 origin ASes are identical, and 60%
of all sibling prefixes have at least one of the prefixes with a valid
ROV status in RPKI. Furthermore, we identify sibling prefixes in
24 hypergiant and CDN networks. Finally, we plan to regularly
publish a list of sibling prefixes to be used by network operators
and fellow researchers in dual-stack studies.
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1 Introduction

Since the beginnings of the standardization of IPv6 in 1998 [20], the
traditional IPv4 Internet and the newer IPv6 Internet have existed
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side-by-side. Initial deployment of IPv6-enabled services as well as
clients has been slow, taking up to 2013 to reach 1% of Internet traffic
[18]. With the exhaustion of the IPv4 address space [47, 49] and the
preference for IPv6 over IPv4 in connection establishments [56, 66],
IPv6 sees continuous growth, with more than 219,000 IPv6 prefixes
in the global routing table in November 2024 [46], more than 75%
of top 1k popular domains being accessible over IPv6 in August
2022 [61], and more than 45% of clients accessing Google via IPv6
in November 2024 [28]. This continuing growth in IPv6 requires a
better understanding of the IPv4 and IPv6 interdependencies. One
such interdependency is siblings, i.e., a connection between an IPv4
and IPv6 address belonging to the same host. The identification of
such connections, i.e., sibling detection has been widely studied in
the past [1, 2, 5, 6, 55]. To date, however, siblings have only been
analyzed on an IP address level.

In this paper, we strive to push the boundaries of sibling detec-
tion and extend their reach from IP addresses to IP prefixes. We
introduce the concept of a sibling prefix as an IPv4 and IPv6 prefix
pair with similar services (i.e., IPv4 and IPv6 prefixes sharing similar
domain names). We present a technique to detect these sibling pre-
fixes by leveraging large-scale DNS resolution results. Identifying
sibling prefixes allows us to better understand interdependencies
between the IPv4 and IPv6 Internet in several ways and is the first
step towards a more comprehensive understanding of differences
in network performance, policy, geolocation and security posture
of services running concurrently on both IPv4 and IPvé6. Sibling
prefixes can show shared networking infrastructure, highlight the
presence of backup paths (or lack thereof) between IPv4 and IPve6,
and shed light on the deployment and management of dual-stack
services in different networks. Moreover, identification of sibling
prefixes can help network operators to make more informed and
inclusive routing decision, by considering both IPv4 and IPv6 as
part of sibling prefixes. The inconsistent treatment of IPv4 and IPv6
traffic, especially in dual-stack environments, might lead to oper-
ational inefliciency or security vulnerabilities. Identifying sibling
prefixes can thus help network operators apply consistent network-
ing policies across both IP address families. For instance, network
operators might want to prioritize, filter, or block traffic/domains
of IPv4 prefixes, and identified sibling prefixes allows to do this
for the IPv6 counterpart as well. Furthermore, service operators
can leverage sibling prefixes to apply knowledge learned about a
prefix for one IP version to the other IP version. One example are
geolocation database providers using sibling prefixes to transfer
geolocation information from IPv4 to IPv6 using sibling prefixes,
thus improving geolocation across IP version boundaries.

Our main contributions in this paper are as follows:
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Figure 1: Number of all domains (left) and dual-stack (DS) domains (right) over time Figure 2: Comparison of Jaccard, Dice,

in the OpenINTEL dataset.

o Sibling prefix detection methodology: We present a novel
technique to detect sibling prefixes and thoroughly evaluate their
suitability. We validate the sibling prefix relationship using the
2200 RIPE Atlas probes, 260 globally distributed dual-stack virtual
private servers, and data from port scan results, see Section 3.

o Tuning sibling prefix sizes: We develop the sibling prefix tuner
(SP-Tuner) algorithm that searches and derives new pairs of sib-
ling prefixes from existing ones with a higher Jaccard similarity,
by looking for more suitable CIDR sizes than the ones observed
in Internet routing. The SP-Tuner algorithm increases the per-
centage of sibling prefixes with Jaccard similarity value of 1
(i.e., perfect match siblings) from 52% to 82%, see Sections 3.3
and 3.4. We publish data and code of our detection methodology
at sibling-prefixes.github.io.

o Large-scale sibling prefix analysis: We perform large-scale sib-
ling prefix measurements using data from IPv4 and IPv6 DNS res-
olutions, finding around 46k unique IPv4 and almost 39k unique
IPv6 prefixes, resulting in more than 76k sibling prefix pairs, of
which more than half share the same organization names for
their IPv4 and IPv6 origin ASes. We also conduct longitudinal
measurements and find that sibling prefixes are relatively stable
over time. While IT organizations have the highest number of
sibling prefixes, we further identify sibling prefixes in 24 hyper-
giants and CDNs. Moreover, we use RPKI data to analyze sibling
prefixes’ route origin validation (ROV) status, finding over 60%
of sibling prefix pairs having at least one valid origin AS, see
Section 4.

e Impact of sibling prefixes: We discuss the potential uses and
impact of sibling prefixes, highlighting the need for tailored prefix
size choices, and drawing attention to a paradigm shift from IP
addresses to domains. Finally, we plan to regularly publish a list
of sibling prefixes for use by fellow researchers and network
operators, see Section 6.

and overlap coefficient similarity met-
rics.

2 Datasets

This section provides details on datasets we use for identifying and
characterizing sibling prefixes.

2.1 DNS Dataset

One of the cornerstones of our methodology to detect sibling pre-
fixes relies on shared domain names between IPv4 and IPv6 prefixes.
We leverage domain names from the OpenINTEL DNS dataset [42]
to obtain DNS resolution results from large-scale measurements.
The OpenINTEL dataset consists of DNS resolution results of the
Alexa top 1M [3], Cloudflare Radar [17], Tranco [65], Cisco Um-
brella [16], and open ccTLD domains. We collect four years of
OpenINTEL data on every second Wednesday of each month from
September 2020 to September 2024, resulting in 49 snapshots.

Figure 1 shows the longitudinal evolution of the OpenINTEL
dataset over time. The left subplot shows the overall number of
domains in the dataset, whereas the right subplot focuses on dual-
stack (DS) domains DS domains are the relevant subset of domains
for identifying sibling prefixes, as we rely on shared IPv4-IPv6
domains within sibling pairs.

As can be seen, the overall number of domains as well as DS
domains in the dataset has been growing over time. This growth
is mainly due to additional datasets being added to OpenINTEL,
such as Tranco in September 2022 and Cloudflare Radar October
2022. The largest increase in the total number of domains occurs
in August 2022, which corresponds to the inclusion of “.fr” TLD
domains 6.35M when it was added to the set of open ccTLDs [59]. On
the contrary, the removal of the Alexa top 1M dataset in May 2023,
leads to a slight decrease in the number of domains. Furthermore,
the percentage of DS domains is also slightly increasing over time
from 25.2% in September 2020 to 31.8% in September 2024. This
highlights the increasing deployment of dual-stack domains and,
therefore, the need to identify these deployments using sibling
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prefixes. In the remainder of the paper, we leverage 3.95 million
unique DS domains to identify sibling prefixes.

2.2 IP to Prefix and AS Dataset

The OpenINTEL dataset provides prefix and AS information for A
and AAAA DNS records, but around 1% of records lack prefix or
AS information. To address this, we use data from the Routeviews
project [52] to identify the missing prefix and AS information. For
less than 0.01% of DS domains, we observe private, invalid, or
reserved IP addresses, which we discard and do not consider for
further analysis. The latest snapshot of the OpenINTEL dataset
(September 11, 2024) contains 271.5k IPv4 addresses and 978.4k
IPv6 addresses, which map to 24.1k unique IPv4 prefixes across 7.5k
ASes and 12.4k IPv6 prefixes across 7.6k ASes, respectively. We use
the extracted IP, prefix, and AS information throughout this paper.

2.3 AS to Organization Mapping Datasets

For all ASes of sibling prefixes, we identify their organization using
the AS organization dataset from Chen et al. [15]. The dataset also
allows us to identify sibling ASes, i.e., ASes maintained by the same
organization. Due to the recency of this dataset, we use CAIDA’s
AS to organization mapping dataset [10] for the analysis prior to
October 2022, and the Chen et al. [15] dataset for the analysis
from October 2022 onward. We use the AS to organization datasets
throughout our analysis to provide insights on the status of sibling
prefixes for the same organization compared to the rest of the
data. We provide further details on sibling prefixes from the same
organization in Section 4.5.

2.4 Hypergiants and CDN Datasets

We use the list of hypergiant (HG) networks provided by Bottger
et al. [9] and Gigis et al. [27], and the list of content distribution
networks (CDNs) [13] to classify sibling prefixes as HG, CDN, and
non-CDN-HG. Using the HG and CDN datasets, we analyze the
similarity status for sibling prefixes of CDN-HG versus non-CDN-
HG in Section 4.7.

2.5 ASdb Datasets

To infer the business type of the origin ASes for sibling prefixes,
we use the ASdb dataset [67]. The dataset classifies ASes into one
or more of 17 business categories, such as “Computer and IT”,
“Government”, or “Media”. This dataset allows us to analyze the
prevalence of different business types among sibling prefixes (see
Section 4.6).

2.6 RPKI Dataset

We examine the validity of each pair of sibling prefixes in the
Resource Public Key Infrastructure (RPKI). For this purpose, we
download the RPKI data of all five Regional Internet Registries
(RIRs) [50] from September 2020 to September 2024 for every month.
With the RPKI data, we identify the route origin validation (ROV)
state for sibling prefix pairs. We use the RPKI dataset in Section 4.8.

2.7 Port Scan Dataset

We scan a set of 14 well-known ports [4, 22, 54] on all IP addresses
of sibling prefixes. We report their responsive status and Jaccard
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similarity by comparing them to the Jaccard similarity observed in
the OpenINTEL data Section 3.6.

3 Methodology

This section explains our methodology to identify sibling prefixes.
We use the mapping of a domain name to an IPv4 and IPv6 address
as an indicator for running services, which can then be used to
infer sibling prefixes.

As we are interested in the actual domain that maps to an IP
address, we use the domain name provided in the DNS response
instead of the queried domain. This helps to overcome cases where
the domain name in the response is different from the domain
that was queried, especially for DNS queries resulting in CNAME
responses. Figure 3 provides an overview of our methodology to
identify sibling prefixes.

3.1 Identifying Sibling Prefixes

As shown in Figure 3, identifying sibling prefixes consists of four
steps: (1) Identifying dual-stack (DS) domains, (2) extracting DS
domain’s IPv4 and IPv6 prefixes, (3) calculating similarity metrics
for all prefix pairs, and (4) selecting sibling prefixes. We detail each
of these steps as follow.

Step 1: Identifying dual-stack (DS) domains. In the first step,
we examine the mapped IP addresses of all domain names in our
dataset. If the domain name maps to a CNAME, we follow the
CNAME chain until we reach the final IP address in the CNAME
chain.

This results in two different sets of domains, all domains resolv-
ing to IPv4 addresses and all domains resolving to IPv6 addresses,
as illustrated with red and blue circles in Figure 3. The intersection
of domain names in these two sets are domain names with both
IPv4 and IPv6 addresses, i.e., DS domains. We use only these DS
domains in our sibling prefix detection technique.

Step 2: Extracting DS domain’s IPv4 and IPv6 prefixes. In
the second step, we identify the prefixes for all IP addresses of DS
domains. We use the prefix information present in the OpenINTEL
dataset (see Section 2) for every IP address of each DS domain. We
then group the domains by IPv4 and IPv6 prefixes to calculate the
similarity between an IPv4 and an IPv6 prefix based on the set of
DS domains.

Step 3: Calculating Jaccard value for all IPv4-IPv6 prefix pairs.
In the third step, we calculate the Jaccard similarity index [32] for
IPv4-IPv6 prefix pairs by comparing the set of domains resolving
to each pair. We denote all DS domains of an IPv4 prefix as set A
and all DS domains of an IPv6 prefix as set B. Then, the Jaccard
similarity index for sets A and B can be calculated as Equation (1):

|AN B
|AUB|

Note that we also investigate alternative similarity metrics, see
Section 3.2.
Step 4: Sibling prefix pairs. For each prefix pair, we get a Jaccard
similarity value between 0 and 1, with values close to 1 indicating
high similarity between two prefixes and values close to 0 indicating
low similarity. In the final step, we select the prefix pairs with the
highest Jaccard value, i.e., the “best match”. Prefix pairs with a

Jaccard(A, B) = (1
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Figure 3: Methodology to identify sibling prefixes using Jaccard similarity index.

similarity value of 0 are discarded, and if multiple prefix pairs share
the same highest Jaccard value, we keep all of them. We refer to
these best matches as sibling prefix pairs for the corresponding
IPv4 and IPv6 prefixes. These are the sibling prefixes we analyze
in-depth in the remainder of the paper.

3.2 Examining Possible Similarity Metrics

Selecting a suitable similarity metric is crucial for identifying sib-
ling prefixes. We compare the overlap coefficient [62] and Dice
coeflicient[60] with the Jaccard similarity index [32].

The overlap coefficient measures the overlap between two finite
sets. For two sets A and B, the overlap coefficient can be calculated
using the intersection of sets A and B divided by the smaller size
of the two sets. To calculate the overlap coefficient (OC) for sets A
and B we use Equation (2):

|A N B|
— @
min(|Al, |B|)

The Dice coefficient is used to measure the similarity of two
samples. It is often used to compare the similarity of two texts or
sequences of words. The Dice coefficient for sets A and B can be
calculated as shown in Equation (3):

OC(A,B) =

2X|ANB|
RV ®)
|Al + |B]

Next, we identify sibling prefixes by applying the Jaccard simi-
larity index, overlap coefficient, and Dice coefficient on DS domains
and compare the results. Figure 2 shows the results of similarity
values for the three metrics. With the overlap coefficient more than
90% of sibling prefix pairs have a similarity value of 1.0. If either DS
domain of the IPv4 prefix is a subset of the IPv6 prefix, or vice versa,
the overlap coefficient value will be by definition 1. This property

Dice(A,B) =

makes the overlap coefficient unsuitable for our study; as explained,
we are interested in similar prefixes, not overlapping prefixes. The
Dice and Jaccard lines in Figure 2 are relatively similar, having a
similarity value of 1 for around 50% of sibling prefix pairs. How-
ever, the similarity values below 1 have slightly different similarity
values, with Dice being lenient to the right side and having higher
similarity values. This is because the Dice coefficient is generally
more sensitive to slight overlaps in sets [60]. On the other hand,
the Jaccard index provides less biased and more balanced similar-
ity results for variable set sizes [25]. In our study, as IPv4 and IP6
prefixes tend to have differently sized domain sets (e.g., sometimes
a couple of domains in one set compared to dozens in the other
set), we choose the Jaccard index as a suitable similarity metric to
identify sibling prefixes.

3.3 Sibling Prefix Tuner (SP-Tuner) Algorithm

We use IP prefixes from BGP announcements and domains to iden-
tify sibling prefixes. The CIDR sizes of these sibling prefix pairs,
derived from BGP announcements, can occasionally be too specific.
Conversely, achieving better Jaccard similarity may be possible by
changing the CIDR size of prefixes to cover more similar sets of do-
mains. We introduce the sibling prefix tuner (SP-Tuner) algorithm
to improve the similarity (i.e., Jaccard similarity value) and fine
tune the CIDR size of sibling prefixes.

We investigate the effects of reducing and increasing prefix sizes
on Jaccard similarity of sibling prefixes. Two possible approaches
are to either check for the Jaccard similarity of less specific or more
specific of the current sibling prefix pairs. For example, to examine
the covering /22 prefix of a BGP-announced /23, or to examine the
Jaccard similarity for more specific prefixes, like the more specific
/24 prefix of the BGP-announced /23 prefix. We implement and
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IPv4 prefix length threshold

Figure 4: Heatmap of SP-Tuner Algo-
rithm Performance: Mean Jaccard In-
dex (top) and Standard Deviation (bot-
tom) across IPv4 (x-axis) and IPv6 (y-axis)
CIDR size thresholds.

thoroughly analyze both the less specific (see Appendix A.1 for
more details) and more specific variants of SP-Tuner algorithm.
In the remainder of the paper we leverage SP-Tuner using more
specific CIDR sizes as it produces better Jaccard similarity values.
A more specific CIDR block, like /28 instead of /24, gives network
operators tighter control over which IP addresses are affected by a
policy. This level of precision is beneficial when network operators
want to block a small set of suspicious IPs without disrupting le-
gitimate traffic or when allowing access only to a narrow group of
trusted hosts. Broader prefixes can be too blunt and end up causing
unintended side effects. We implement the SP-Tuner algorithm with
two PyTricia tree [33] data structures for each IP version and their
respective DS domains. PyTricia facilitates efficient storage and
retrieval of IP addresses and their associated domains within a tree
data structure.

As shown in Algorithm 1, the more-specific variant of SP-Tuner
(i.e., SP-Tuner-MS) processes each sibling prefix pair to refine it into
more specific subprefixes. The algorithm traverses each tree in the
downward direction from the point of prefix insertion to identify
more specific prefixes with improved Jaccard values. During this
traversal, some domains may fall under alternate branches that
are not part of the best-matching subprefix. These subprefixes still
contain relevant domains but are excluded from the maximal pair.
To prevent domain loss, we track these additional branches and
treat them as new candidate sibling prefix pairs, applying the SP-
Tuner algorithm to them as well. This approach ensures that no
domains are lost during prefix size tuning. Additionally, we employ
thresholds at both IPv4 and IPv6 prefix levels to ensure that tree
traversal stops at meaningful levels.

3.4 Effectiveness of SP-Tuner

To evaluate the effectiveness of the SP-Tuner algorithm, we apply
the algorithm on the most recent domain snapshot from Septeber
11, 2024. We configure two CIDR size values, one for IPv4 and
one for IPv6, as the threshold of the SP-Tuner algorithm. The SP-
Tuner algorithm calculates the Jaccard value of sibling prefixes by

Jaccard similarity

Figure 5: CDF of Jaccard similar-
ity for sibling prefixes comparing
default values with SP-Tuner al-
gorithm at routable and optimal
IPv4/IPv6 thresholds.
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Algorithm 1 SP-Tuner-MS (More Specific)

Data: DS domains, IPv4_addresses, IPv6_addresses, sibling prefix pairs, Jaccard similarity

Result: Refined sibling prefix pairs with improved Jaccard similarity

Initialization:
tree_v4 «— {DS_domains, IPv4_addresses}
tree_v6 «<— {DS_domains, IPv6_addresses}
curr_jacc < precomputed non-zero value
prefix_v4_len_thresh
prefix_v6_len_thresh

> IPv4 prefix length threshold
> IPv6 prefix length threshold

1: for (sibling_prefix_v4, sibling_prefix_v6) € sibling_prefix_pairs do

2: tree_v4 « sibling_prefix_v4

3: tree_v6 « sibling_prefix_v6

4: new_jacc < 0

5: while new_jacc < curr_jacc do

6: prefix_vd_subprefixes « GetNextSubprefixes(sibling_prefix_v4)
7: prefix_v6_subprefixes «— GetNextSubprefixes(sibling_prefix_v6)
8: for prefix_v4 € prefix_v4_subprefixes do

9: for prefix v6 € prefix_v6_subprefixes do

10: new_jacc «— max(Jaccard(prefix_v4, prefixvé))

11: if HasBranch(prefix_v4, prefix_v6) then

12: sibling_prefix_pairs < UpdateBranches()

13: if (prefix_v4_len > prefix_v4_len_thresh)

14: and (prefix_v6_len > prefix_v6_len_thresh) then

15: return (prefix_v4, prefix_v6)

reducing the sibling prefix size up to and including the threshold to
check and improve the Jaccard value whenever possible. To assess
the impact of different prefix size thresholds, we investigate various
IPv4 and IPv6 prefix sizes, starting from /16 up to /31 for IPv4, and
from /32 up to /124 for IPv6 sibling prefixes, respectively.

Figure 4 shows our results for SP-Tuner thresholds up to /28
IPv4 and /96 IPv6 prefix sizes. We refer the interested reader to
Figure 19 in Appendix A.2 for the complete heatmap. The color in
Figure 4 and the top value within each cell indicate the mean Jaccard
value for all sibling prefixes, and the bottom value within each cell
shows the standard deviation of the Jaccard values. Moreover, the
x-axis and y-axis in Figure 4 represents IPv4 and IPv6 prefix length
thresholds, respectively, starting from /16 for IPv4 and /32 for IPve6,
with subsequent thresholds increasing incrementally.

Examining the mean Jaccard values of Figure 4 row-wise for
the IPv4 threshold shows that the more specific the IPv4 CIDR
size, the higher the mean Jaccard value. The same pattern applies
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to the column-wise mean Jaccard values for the IPv6 threshold.
We find that from the lowest mean Jaccard value of 0.647 for the
combination IPv4 threshold of /16 and IPv6 threshold of /32, the
SP-Tuner algorithm can improve the mean Jaccard value up to
0.878 for the /28 and /96 threshold values of IPv4 and IPv6 prefixes,
respectively. On the same combination, SP-Tuner also reduces the
standard deviation from 0.410 to 0.287. The improvements in Jaccard
similarity, deriving more similar sibling prefixes for existing prefixes
with low standard deviation, show that the SP-Tuner algorithm
is able to identify more fine-tuned sibling prefixes with higher
Jaccard similarity. Note that the goal is to identify sibling prefixes
at the prefix level, not the IP address level. Hence, we pick prefix
thresholds of /28 and /96. We leave the choice to users of sibling
prefixes to pick suitable CIDR sizes based on their specific use
case, be it the default BGP-announced sibling prefixes as seen in
the dataset, or /24 IPv4 and /48 IPv6 thresholds for most-specific
routable prefixes, or /28 and /96 as in our case. For this study,
we provide a detailed analysis based on the /28 and /96 threshold
prefixes as the highest Jaccard similarity value with the lowest
standard deviation.

We further examine the impact of the SP-Tuner algorithm by
applying it on the data from September 11, 2024 and comparing it
with the default BGP-announced, as seen in the DNS data, sibling
prefixes. Figure 5 shows the CDF of Jaccard similarity values for the
default BGP-announced sibling prefixes in red, SP-Tuner routable
threshold of /24 and /48 for IPv4 and IPv6, respectively, and the best
performance SP-Tuner case with an IPv4 threshold of /28 and an
IPv6 one of /96. We see for the default case around 52% of sibling
prefixes have a Jaccard value of 1, i.e., they are perfect matches.
After applying SP-Tuner, this percentage increases to 67% for the
routable prefix threshold and to more than 82% for the /28 and /96
thresholds. In summary, the SP-Tuner with the best performance
thresholds increases the number of sibling prefixes from 52% in
the default case to around 82% of sibling prefix pairs, all having
Jaccard similarity index of 1 and more tailored smaller CIDR sizes
by excluding irrelevant address spaces of prefixes.

3.5 Ground Truth Evaluation

To compare our identified sibling prefixes with a real-world deploy-
ment, we use RIPE Atlas probes [40] as a “ground-truth” dataset.
We extract the publicly available IPv4 and IPv6 addresses from
dual-stack RIPE Atlas probes, map them to prefixes, and compare
these prefixes to our identified sibling prefixes.

From a total of 5174 dual-stack probes, 2200 (42.5%) probes have
IPv4 and IPv6 covered by our sibling prefixes, 1663 (32.1%) of probes
are partially covered by our sibling prefixes (i.e., either IPv4 or IPv6),
and 1310 (25.3 %) probes are not covered by our sibling prefixes at all.
This shows that almost half of the dual-stack probes are completely
covered by our sibling prefix dataset, which means that we can
evaluate the similarity of the RIPE Atlas dual-stack probes with our
sibling prefix results. Out of the 2200 completely covered RIPE Atlas
probes, 1966 (89.36%) are in our best-match sibling prefixes (i.e.,
results of step 4 of Figure 3). On the other hand, only 234 (10.64%)
of the completely covered probes are not best-match siblings. This
underlines that our sibling prefixes line up quite well with the RIPE
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Atlas probes ground-truth dataset, which increases the confidence
in our chosen methodology.

Finally, we also check our identified sibling prefixes against 260
globally distributed dual-stacked virtual private servers (VPSes)
from IPinfo’s probe network [31] hosted by different VPS providers
(e.g., Google, Azure, Vultr, AWS). For the VPSes where we get both
an IPv4 and IPv6 address match in our siblings, 53 are within our
best-match siblings, whereas 13 are mismatches, with the remainder
not having IPv4 and IPv6 matches. This again shows, that the
majority of our best matches provide accurate siblings matches.

3.6 Overlap with Open Ports

To better understand if our identified sibling prefixes based on
domain names also align with actual deployed infrastructure, we
compare our domain-based approach with an open-port-based ap-
proach. We use IP addresses from our latest OpenINTEL dataset
on September 11, 2024 as the reference dataset and perform active
scanning on September 19, 2024. We then perform port scans using
ZMap [23] and ZMapv6 [63] on 14 common open ports [4, 22, 54],
ie., 20, 21, 22, 23, 25, 53, 80, 110, 123, 143, 161, 194, 443, 7547. For
70.9% of sibling prefixes we get responses. Then, we map the ad-
dresses from the port scanning results with the prefixes in sibling
prefixes to identify the associated prefixes for them. We use the
Jaccard similarity index to determine the similarity between these
prefix pairs. However, instead of using the domain set, we utilize
the responsive ports within IPv4 and IPv6 prefixes.

In Figure 6 the heatmaps display the Jaccard similarity values of
sibling prefixes based on the port scan on the y-axis, and the Jaccard
values for the same pairs of sibling prefixes based on the OpenINTEL
dataset on the x-axis. The color and number in each heatmap cell
shows the percentage of sibling prefixes based on 28-96 threshold
pair of SP-Tuner algorithm. For the top row, the rightmost cell shows
a value of 36% as the highest number of sibling prefixes matching
> 0.9 Jaccard value on the both x and y axes. This indicates a
correlation between the similarity of the OpenINTEL results and
port scan results for sibling prefixes. Moreover, the values in the
topmost row of Figure 6 reflect that for sibling prefix pairs having
high Jaccard value (> 0.9) in port scan, the OpenINTEL Jaccard
similarity is distributed to a lower range. A similar pattern with a
slightly lower percentage is valid by comparing the OpenINTEL
Jaccard value with > 0.9 on the rightmost column to the port scan
on the y-axis. In summary, 36% of responsive sibling prefix pairs
with a high Jaccard similarity of > 0.9 on OpenINTEL dataset are
also likely to have a high Jaccard value based on port scan results.

3.7 Limitations

Although we try to fine-tune our methodology quite well to the task
of sibling prefix detection, there are some limitations to it, which we
will elaborate in the following. As our sibling prefix methodology is
fundamentally based on domain name data, it is only as good as the
used domain name data for sibling identification. In our analysis, we
leverage a large-scale DNS resolution dataset (see Section 2.1). Even
though the dataset covers more than 13 million unique domains,
our findings are limited to the used dataset, which represents only
a subset of all DNS domains. Thus, adding even more domain name
data as an input to the methodology, might provide better coverage
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Figure 7: Consistently visible DS domains (left), prefix changes (center), and address changes (right).

in terms of the number of sibling prefixes and potentially also their
quality. Our methodology can also be applied with inputs different
than domain names, such as alias datasets or open ports on devices
(see Section 3.6). As long as these inputs result in a mapping from
a prefix to a set, our technique of using set similarity and then
picking the maximum similarity value can still be applied. Despite
these limitations, we believe that our methodology is suitable to
detect sibling prefixes in the Internet.

3.8 Ethical Considerations

In this work, we follow ethical Internet measurement guidelines [21,
23, 45]. First, we use use publicly available datasets (see Section 2).
Second, for ground truth evaluation and comparison of DNS data
with open ports (see Sections 3.5 and 3.6), we perform port scans
on IP addresses from the OpenINTEL dataset. To limit potential
harm for third parties, we use a blocklist, maintain public web
pages describing our measurement activity and providing contact
information, and we limit our scanning rate to 50 kpps. Third,
during our measurements, we did not receive any complaints. Thus,
we believe that our work does not raise ethical concerns.

4 Sibling Prefixes

In this section, we thoroughly analyze sibling prefixes observed
in our dataset. We begin with examining IP and prefix changes
of dual-stack domains, followed by exploring their distribution in
sibling prefixes. We then continue exploring sibling prefixes by
conducting a longitudinal analysis and by assessing the impact of
SP-Tuner on historical data. Next we analyze CIDR sizes, origin
ASes, and business types of sibling prefixes. Finally, we conclude the
analysis by investigating differences of sibling prefix characteristics
in hypergiant and CDN networks and examine their ROV status.
Throughout this section, we use the sibling prefix pairs resulting
from our SP-Tuner algorithm with a /28 IPv4 and a/96 IPv6 prefix
threshold. For some cases where using sibling prefixes as observed
in BGP announcements (i.e., the default case) is more relevant
to our analysis, we use that notion of sibling prefixes. Analyzing
the OpenINTEL dataset, we identify 3.5M dual-stack (DS) domains

running on IP addresses of 46.3k IPv4 and 39.5k IPv6 prefixes. These
prefixes originated from 6.6k IPv4 and 5.9k IPv6 ASes, collectively
they result in 76k sibling prefixes as of September 2024.

4.1 Address and Prefix Dynamics in Dual-Stack
Domains

Before diving into the analysis of sibling prefixes themselves, we
first analyze address and prefix dynamics found in DS domains.
The goal of this analysis is to understand to what extent addresses
and prefixes of DS domains change over time. We analyze address
and prefix changes for the DS that are consistently visible in our
dataset. To identify these consistent DS domains, we examine how
frequently a sibling prefix appears in our dataset over a one year
period from September 13, 2023, to September 11, 2024, i.e., a total of
thirteen monthly snapshots. We collect data over a 13-month period
to ensure year-over-year coverage and make full use of available
data.

The left subplot in Figure 7 illustrates the cumulative distribution
of DS domains on the y-axis and the number of times a DS domain
appeared in the data (“visibility frequency”) on the x-axis. Around
40% of DS domains are consistently visible in all thirteen data points.
About 20% of DS domains appear only once, and the remaining
40% of DS domains have a visibility frequency of two to twelve
snapshots. These percentage values indicate that apart from the 40%
consistent DS domains, the remaining 60% of DS domains are either
not consistently dual-stack (i.e., they switch between dual-stack to
IPv4/IPv6-only) or are not always present in our dataset.

Next, we want to analyze and peek into the temporal prefix
stability of the 40% consistent DS domains. The center subplot
of Figure 7 shows the percentage of DS domains having stable
prefixes over time, again with the reference date of September
11, 2024, as “day 0” on the x-axis. We observe that around 95% of
consistently visible DS domains are resolved to the same prefix for
up to three months. We do not see any prefix change throughout
the one-year analysis period for more than 91% of DS domains.
While the maximum change for IPv4 prefixes is around 9%, this
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Figure 8: Sibling prefix pairs count and clas-
sification based on number of dual-stack do-
mains in each IPv4 and IPv6 prefix of sibling
prefixes

number is lower at around 6% for IPv6 prefixes. This shows that
overall, consistent DS domains exhibit high prefix stability.
Finally, we analyze changes of consistently visible DS domains
on the IP address level, shown in the right subplot of Figure 7. We
find that 83% of DS domains are mapped to the same IP addresses
throughout the analysis period. Overall, on the IP address level
IPv4 and IPv6 behave much more similarly compared to the prefix
level. This indicates that addresses change at a similar rate in both
protocols, but prefixes are more stable in IPv6 compared to IPv4.
To summarize: We show that 40% of DS domains are consis-
tently visible for thirteen months. Additionally, 83% of these consis-
tent DS domains have stable addresses, and 91% of the consistent
DS domains have stable prefixes throughout one year. This shows
that consistent DS domains from our DNS dataset are stable and
can therefore be used for our sibling prefix identification technique.

4.2 Dual-Stack Domains in Sibling Prefixes

Next, we focus on analyzing the number of DS domains within
each sibling prefix pair. For this purpose, we first generate sibling
prefixes using the SP-Tuner algorithm with a /28 and /96 CIDR
threshold. Then, we group sibling prefixes by the number of dual-
stack domains within each pair. As shown in Figure 8, we bin sibling
prefixes regarding the number of associated domains. The cell color
and number in the heatmap show the percentage of sibling prefixes
for each group of DS domains. Over 55% of sibling prefix pairs
contain a single domain, as shown in the bottom left corner of the
plot. The sibling prefix pairs with 2 to 5 domains are the second-
largest group, making up 21.3% of sibling prefixes. Furthermore,
sibling prefixes with more than 100 domains for IPv4 and IPv6
contribute 1.6% to all sibling prefixes. Finally, the diagonal cells in
the heatmap contains a relatively high percentage of sibling prefixes
compared to neighboring cells, indicating that sibling prefixes are
relatively likely to share a similar number of DS domains for IPv4
and IPv6 prefixes.

To summarize: The majority of sibling prefixes contain single
domains. Moreover, we observe a relatively high number of IPv4
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sibling prefixes with more than 100 dual-stack domains. Finally,
sibling prefixes tend to have a similar number of domains for IPv4
and IPvé6.

4.3 Longitudinal Analysis

In this part of the analysis we perform a longitudinal analysis of
sibling prefixes over a 4-year period, as shown in Figure 9. The
x-axis shows different points in time starting from the base date
September 11, 2024 denoted as “day 0”, and previous points in time
denoted by the difference to this base date. Over the past four years,
the number of sibling prefixes has doubled from around 36k to
more than 76k. This is due to the addition of dual-stack domains
in OpenINTEL (see Section 2.1) and to the increased use of IPv6
among previous IPv4-only domains.

To provide insights into temporal effect on sibling prefixes, we
perform a longitudinal analysis of Jaccard values. To this end, we
compare our most recent snapshot (September 2024) with data from
four years ago (September 2020). Note that—as any longitudinal
analysis—this analysis is generally affected by changes in the un-
derlying used datasets as well as changes in the Internet as a whole.
When investigating the potential impact of changes in the datasets,
we can see that the percentage of DS domains remains very stable,
even for adding the “fr” TLD in August 2022 and removing the
Alexa toplist from the OpenINTEL data in May 2023 (see Figure 1
right). When looking at the number of sibling prefixes in Figure 14
we see a slight changes for these two dates. Rather than sudden
jumps or drops these changes are more gradual, hinting at multiple
different effects being at play in addition to changes in the underly-
ing datasets. Therefore, we believe that the general trends in the
longitudinal analaysis still provide valuable insights into sibling
prefix changes over time.

Figure 10 compares the Jaccard value distribution for sibling
prefixes where the Jaccard value has not changed (“unchanged”,
blue line), with changed sibling prefixes (“changed”, red lines), and
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Figure 11: Jaccard similarity of sib-
ling prefixes for various data points
in time. (Reference date: September
11, 2024)

completely new sibling prefixes (“new”, green line). We further dif-
ferentiate the changed sibling prefixes by plotting their old Jaccard
value (dashed line) and new Jaccard value (solid line).

From a total of 76k sibling prefixes, the “new” category makes
up 67k (88%), “unchanged” 7.7k (10%), and “changed” 1.2k (2%) of
sibling prefixes. We find that unchanged sibling prefixes exhibit
the highest similarity, with almost all of them having a Jaccard
value of 1. New sibling prefixes are more similar (80% with Jaccard
value 1) compared to old, but changed (21% with Jaccard value of
1) sibling prefixes. Finally, the current Jaccard value of changed
sibling prefixes is lower compared to their Jaccard value four years
ago.

To measure the impact of SP-Tuner on Jaccard similarity, we
compare sibling prefixes as observed in our dataset (i.e., with default
BGP-announced prefix sizes) in Figure 11 with sibling prefixes after
applying SP-Tuner in Figure 12. For the default case, we see that
around 45 to 55% of sibling prefixes have a Jaccard similarity value
of 1. However, after applying SP-Tuner in Figure 12, the percentage
of sibling prefixes with a Jaccard similarity value of 1 is almost
doubled to around 80%. This improvement in Jaccard similarity
values shows that SP-Tuner is able to identify a high number of
fine-tuned sibling prefixes for various points in time.

To summarize: The number of sibling prefixes has more than
doubled compared to four years ago to around 76k in September
2024. We find that the Jaccard value of sibling prefixes has sub-
stantially improved over time, with old prefixes having around 21%
and new sibling prefixes having 80% of prefix pairs with a Jaccard
value of 1. The changed sibling prefixes have the least, 18%, and
unchanged sibling prefixes have the highest percentage of 99% sib-
ling prefixes with a Jaccard value of 1. Moreover, fine-tuned sibling
prefixes identified by SP-Tuner outperform BGP-announced sibling
prefixes by almost doubling the fraction of perfect matches.

4.4 CIDR Sizes

We continue our analysis by examining the most common CIDR
sizes of IPv4 and IPv6 in sibling prefix pairs. As for SP-Tuner, the
vast majority, i.e., 86.95%, of sibling prefixes fall into /28 and /96

Jaccard similarity

Figure 12: CDF of Jaccard similarity
values for sibling prefixes on vari-
ous data snapshots in time.

1Pv4 prefix length (/)

Figure 13: Distribution of CIDR sizes in sibling
prefixes.

IPv4 and IPv6 CIDR sizes. This is due to the /28-/96 threshold
applied by SP-Tuner, which maps most prefixes to these prefix
length values (see Appendix A.2, Figure 36). Therefore, we focus
on the default case as it shows a more nuanced distribution as can
be seen in Figure 13. To aid readability, we group sibling prefixes
into different CIDR size groups, separating out commonly used
CIDR sizes. We observe that /24 is the most prevalent CIDR size in
IPv4, while /48 is most prominent in IPv6. Consequently, the /24-
/48-combination makes up the largest share of sibling prefixes with
23.41% of pairs. Notably, we see relatively high percentages for cells
in the region between /17-/24 in IPv4 and /32-/48 in IPv6, which
together makes up more than 88% of all sibling prefixes. We observe
a small fraction of sibling prefix pairs formed by less specific prefix
CIDR sizes smaller than /17 for IPv4 and less specific than /32 in
IPv6. Moreover, non-globally-routable prefixes [57] more specific
than /24 in TPv4 and /48 in IPv6 are very rare among sibling prefixes.

To summarize: The majority of SP-Tuner sibling prefixes fall
into the /28-/96 group, whereas BGP-announced sibling prefixes
are most commonly /24 in IPv4 and /48 in IPv6. Moreover, CIDR
size ranges from /17 to /24 in IPv4 and /32 to /48 in IPv6, make up
the vast majority of sibling prefixes on the Internet.

4.5 Origin ASes

In this section, we analyze the difference of sibling prefixes being
originated by the same or different organizations. We merge sibling
ASes in order to obtain sibling prefixes originated by the same or
different organizations [14]. If the origin ASes of IPv4 and IPv6
sibling prefixes in our dataset either share the same AS number
or, if different, are registered to the same organization name, we
classify them as “same organization”; the remaining sibling prefixes
are classified as “different organization”. Figure 14 shows a longi-
tudinal view of the number of sibling prefixes originated by the
same or different organization category. We find that of the nearly
76k sibling prefixes in September 2024, more than half of them
(around 41k) belong to the same organization category, indicating
that their IPv4 and IPv6 origin ASes share the same organization
name. Note that this does not mean that all of these prefixes belong
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Figure 14: Sibling prefix pairs count for
the same and different organizations
over time. Lines represent the number
of unique IPv4 and IPv6 prefixes in sib-
ling prefixes.

to a single organization, but rather to multiple organizations whose
IPv4 and IPv6 ASes are registered under the same name. Sibling
prefix pairs from the different organizations category contribute
around 35k pairs in September 2024. We also notice a dip in sibling
prefixes originated by different organization ASes in May 2023 and
earlier snapshots. Investigating the case, we find a unique domain
(site24x7.enduserexp.com) missing in the OpenINTEL data on May
2023 and in earlier snapshots. Site24x7 is an IT infrastructure mon-
itoring company [58], hosting probes in around 376 IPv4 and 55
IPv6 prefixes, all being originated by different origin ASes and with
that single domain, resulting in around 20.5k sibling prefixes mostly
with a Jaccard value of 1. In our dataset, site24x7.enduserexp.com is
missing on May 2023 and on multiple dates in 2022 and 2021 (see
dips of “diff. org” bars), resulting in fewer sibling prefixes for the
different organization case.

Moreover, we show the number of unique IPv4 and IPv6 prefixes
(red and blue lines), which are generally quite stable over time.
The slight increase in prefixes over time is due to improvements in
OpenINTEL’s domain coverage. Overall, we identify around 6.8k
more IPv4 prefixes (46.3k) compared to IPv6 (39.5k) as observed in
September 2024. The high ratio of IPv4 to IPv6 is due to the larger
prefix size in IPv6 compared to IPv4, which in turn is able to cover
more IP addresses and domains.

To shed more light on sibling prefixes depending on the origin AS
organization, Figure 15 shows the median Jaccard value for sibling
prefixes for same and different organizations over time. The green
line shows the median Jaccard value for sibling prefixes of the same
organization and has remained relatively stable at 1.0 over the past
four years. The purple line, the median Jaccard value for sibling pre-
fixes originated by different organizations, also has a Jaccard value
of almost one with few dips to around 0.7 and 0.9 in 2021. The pur-
ple line shows an evident influence of the site24x7.enduserexp.com
domain on median Jaccard values for different organizations. As
such, when that domain is present, it causes many sibling prefixes
pairs having a Jaccard value of 1, and its absence is causing the me-
dian Jaccard value to drop. This indicates that, if we exclude special

Date (monthly)

Figure 15: Median Jaccard similarity val-
ues of sibling prefix pairs for same and
different organizations over time.

Origin AS of IPv4 prefix

Figure 16: Business types heatmap for ori-
gin ASes of sibling prefixes, with IPv4 on
x-axis and IPv6 on y-axis, indicating the
count of sibling pairs in each cell.

cases such as Site24x7, sibling prefixes originated by the different
organization generally exhibit a high similarity as sibling prefixes
originated by the same organization case. Moreverove, other sites
like Catchpoint [12], services that use multi-CDN [34, 51], along-
side, some authoritative DNS that return more than one address to
the queries might be potential reasons for different organizations
category.

To summarize: We identify around 46k unique IPv4 and almost
39k unique IPv6 prefixes, resulting in more than 76k sibling prefix
pairs in the dataset as of September 2024. More than half of these
sibling prefixes, both the IPv4 and IPv6 prefixes are originated
by the same organization, which has a median Jaccard value of 1.
The median Jaccard value for different organizations is sensitive to
special case(s) involving a single domain.

4.6 Business Types

To better understand the users of sibling prefixes, we analyze the
business type of sibling prefix organizations. For this purpose, we
use the most recent ASdb dataset [67] from January 2024 to identify
the business type of each sibling prefix origin AS in our January
2024 sibling prefix snapshot as observed in our dataset. For this
particular analysis, we use only those origin ASes of sibling prefixes
that match a single business type, making up around 80% of all the
prefixes. As we want to focus our attention on business relationships
of sibling prefixes originated by different ASes, we therefore exclude
sibling prefix pairs where both IPv4 and IPv6 prefixes have the
same origin AS. The same AS number map to the same business
type(s). We also present a more inclusive analysis of the business
relationship for sibling prefixes, including those with the same
origin AS number in Appendix A.4.

In Figure 16 we show the business type for origin ASes of IPv4
prefixes on the x-axis and for IPv6 prefixes on the y-axis, with
the cell color indicating the number of sibling prefixes within this
business combination. We notice that IT organizations (light yellow
cell) form the largest fraction of sibling prefix pairs with more than
10k pairs for IPv4 and IPv6 origin ASes. Origin ASes in the education
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Figure 17: Heatmap of Jaccard similarity values (%) for sibling
prefixes of Hypergiant and CDN networks, and non-CDN-
Hypergiant ASes.

category (black cell in the top left) form the second largest fraction
of around 150 sibling prefix pairs. The vertical and horizontal color
density of the cells for IT organizations indicates the usage patterns
of sibling prefixes for different ASes, where at least one of the origin
ASes belongs to an IT organization. Showing that organizations
mostly use IT companies, in addition to their own infrastructure
for their services (i.e., websites). We also observe a small number
of sibling prefix pairs with both origin ASes in the government,
media, and retail categories.

To summarize: We observe that 80% of sibling prefixes with
different origin ASes can be mapped to a single business type.
IT companies contribute the highest share of around 10k sibling
prefixes, with educational organizations following second. For most
of the remaining sibling prefixes, at least one origin AS belongs to
an IT organization.

4.7 Hypergiants and CDNs

Next, we analyze to what extent sibling prefixes are used by hy-
pergiants (HGs) and content distribution networks (CDNs). We
analyze similarity values for sibling prefixes for known HGs and
CDNs and compare them with other networks using our most re-
cent data snapshot of September 11, 2024. For every prefix pair, we
identify their organization using the dataset from Chen et al. [15]
and use the list of publicly known HGs [9] and CDNs [13]. Note,
we only consider SP-Tuner output sibling prefixes where IPv4 and
IPv6 prefixes belong to the same organization of HG or CDN.

Figure 17 shows the distribution of Jaccard similarity values in
HGs, CDNs, and other networks. The y-axis shows the organiza-
tion names of one of the 24 HGs or CDNs, with the number in
parentheses indicating the count of sibling prefixes for this specific
HG or CDN. We group all the HGs and CDNs that contribute less
than 50 sibling prefix pairs as “other-HG-CDN”. Moreover, sibling
prefixes that are neither originated by HGs nor CDNs are shown
as “non-CDN-HG” in the bottom row.
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Figure 18: Route Origin Validation (ROV) status of sibling
prefix pairs in the RPKI data over time.

The x-axis shows the Jaccard similarity values in ten cells, rang-
ing from the smallest Jaccard similarity value of 0.0-0.1 to a very
high similarity of 0.9-1.0. The color and number in each heatmap
cell indicate the percentage of sibling prefix pairs for each HG or
CDN with specific Jaccard similarity value. Thus, each row shows
the distribution of sibling prefixes for a specific HG or CDN, sum-
ming up to 100%.

Examining the number of sibling prefixes, we identify the the
highest number of sibling prefixes for Amazon, with 4564 pairs,
followed by Microsoft, Akamai, and Google with 1125, 1056, and
1046 sibling prefix pairs, respectively. The right-most (0.9-1.0) col-
umn, with a few exceptions, contains the highest shares of sibling
prefixes. This shows that many sibling prefixes in an HG and CDN
are very similar in containing perfect matching domains. Cloud-
flare and Akamai have the highest share of sibling prefixes in the
worst matching category, i.e., with Jaccard values of 0.0-0.1. This
aligns with certain CDNs moving semantics from IP addresses to
domain names [24, 36, 38]. For non-CDN-HG ASes, 78% of sibling
prefixes have a high Jaccard similarity value of 0.9-1.0. We observe
the highest matching category for 93% of Facebook sibling prefixes
and 91% of other-HG-CDN category followed by GoDaddy having
86% as the top three. Overall, we see that CDNs and HGs exhibit
high similarity for sibling prefixes.

To summarize: We identify 24 hypergiant or CDNs using sibling
prefixes. Amazon, Microsoft, and Akamai are the top three HGs
with the highest number of sibling prefixes. The vast majority of
sibling prefixes in HGs and CDNs are either very similar, with few
HGs being exceptions with low similarity scores.

4.8 RPKI Validity

The resource public key infrastructure (RPKI) can be used to check
the legitimacy of a prefix announcement in BGP. Thus, we use RPKI
data [50] to analyze the legitimacy of sibling prefix pairs as observed
in our dataset. For this analysis we use the BGP-announced prefix
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sizes instead of the SP-Tuner output, as those align better for this
BGP-specific analysis.

Figure 18 illustrates the route origin validation (ROV) status for
sibling prefixes from monthly snapshots between September 2020
and September 2024. While the x and y axes show the date and
percentage, the share for each ROV status is displayed as the area
over time. The red color indicates that both prefixes in a sibling
prefix pair have a valid ROV status. The blue indicates that at least
one of two prefixes has a valid ROV status, and the other was not
found in RPKI. We find that for nearly 50% of sibling prefixes in
2020, to around 65% of sibling prefixes in September 2024, either
one (i.e., the IPv4 or IPv6 prefix) or both prefixes of a sibling pair
have a valid ROV status. For a small fraction of sibling prefixes
(2-8%), we observe a conflicting ROV status, i.e., one prefix has
a valid and the other an invalid ROV status (green). The share of
both prefixes not being in the RPKI (purple) decreases from 40%
in September 2020 to almost 20% in September 2024. For around
10% of sibling prefixes, we observe an ROV status of either one
prefix being invalid and another not found or both prefixes having
an invalid ROV status, as shown in orange and light green colors,
respectively.

These findings are in line with the general trend of increased
RPKI deployment in the Internet [41] and can help protect sibling
prefixes from routing incidents such as BGP hijacks [8, 11, 48]. For
all sibling prefix pairs, where one prefix is valid, and the other is not
found, it is crucial to add the second prefix to the RPKI by creating
a valid route origin authorization (ROA) object. It is even more
important for cases where entire sibling prefix pair have invalid, a
combination of (valid, invalid) or (invalid, not found) ROV state. In
such cases, traffic might not be routed to those prefixes over both
IP protocol versions, leading to a lack of resilience.

To summarize: For around 65% of sibling prefixes, at least one
sibling prefix has a valid ROV status. Still, for nearly 10% of sibling
prefixes, at least one prefix has an invalid ROV status.

The decrease in number of not-found ROV cases over time, is in
line with the overall increase in RPKI deployment. Creating valid
ROV status for both pairs of sibling prefixes is essential to protect
sibling prefixes and services running on those prefixes from routing
incidents like BGP hijacks.

5 Related Work

Previous studies explored various aspects of siblings, alias resolu-
tion, fingerprinting techniques, IP addresses, and device detection
on the Internet, focusing on the IP address level rather than on the
prefix level.

Server siblings: In 2013, Berger et al. [5] studied the associations
between Internet DNS client resolver IPv4 and IPv6 addresses. The
study uses passive and active techniques to identify 674k associated
address pairs. In 2015, Beverly and Berger [6] identified pairs of
IPv4 and IPv6 server addresses potentially assigned to the same
physical machine as siblings using TCP-reachable devices. In 2016,
Czyz et al. [19] explored potential policy discrepancies between
IPv4 and IPv6 dual-stack hosts and found that a ports are nearly
always more open in IPv6 compared to IPv4. In 2017, Scheitle et al.
[55] identified pairs of server IPv4 and IPv6 addresses as siblings
using TCP timestamps. They used manually crafted algorithms and
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machine-learned decision trees to classify pairs of IPv4 and IPv6
server addresses as siblings, i.e., running on the same machine. In
2021 and 2023, Albakour et al. [1, 2] explored SNMPv3, SSH, and
BGP for remotely fingerprinting network infrastructure in the wild.
By sending unsolicited and unauthenticated SNMPv3 requests, the
authors identified the status of network devices, including device
vendor and uptime.
Alias resolution and fingerprinting: In 2012, Keys et al. [35]
introduced MIDAR, a tool leveraging the IP ID for alias resolution. In
2013, Luckie et al. [37] proposed Speedtrap, a technique that induces
fragmented IPv6 responses from router interfaces in a particular
temporal pattern to for router fingerprinting. In 2015, Padnamabhan
et al. [43] introduced UAv6, a new alias resolution technique for
IPv6. They probed the unused addresses using ICMPv6 Address
Unreachable responses for IPv6 alias resolution. In 2016, Beverly
and Berger [7], focused on discovering router-level IPv6 topologies.
They used fingerprinting-based IPv6 alias resolution techniques to
induce fragmented responses from IPv6 router interfaces. In 2020,
Vermeulen et al. [64] presented a tool called “Limited Ltd.” which
exploits ICMP rate limiting for alias resolution.
Address assignment: In 2020, Padnamabhan et al. [44] looked
into the IPv6 address assignments in various networks and how
they relate to IPv4 dynamics. They found IPv6 assignments having
longer durations than IPv4, often remaining stable for months. In
2023, Rye and Levin [53] leveraged NTP pools to gather 7.9 billion
IPv6 addresses from NTP clients, examining the potential benefits
and harm of larger IPv6 hitlists and the possibility of measurement
and analysis. In the same year, Hsu et al. [29] identified the most
common delegation prefix length by RIRs being /32, and the most
prevalent BGP prefix length in IPv6 being a /48.
Prefix lists: The work most closely related to ours is by Naab et al.
[39], who introduced the concept of prefix top lists in 2019. After
aggregating domain-based top lists into network prefixes, they
leveraged a Zipf distribution to assign weights to each prefix. They
found that different domain-based top lists provide differentiated
views on the Internet prefixes with minimal weight change over
time.

To the best of our knowledge, our work is the first to investigate
sibling relationships between IPv4 and IPv6 on a prefix-level.

6 Discussion

Sibling prefix input dataset: In this research, we introduce a tech-
nique to identify sibling prefixes in the Internet. While our analysis
uses domain similarity as input to identify sibling prefixes, we ar-
gue that we can identify sibling prefixes using other services, such
as DNS MX records, rDNS names, or aliased hosts. We cross-check
our findings with real world deployments of RIPE Atlas probes as
a “ground-truth” dataset, finding a high overlap. Additionally, we
perform port scans and find correlations between sibling prefixes
identified using DNS and port scan datasets. An even larger and
more comprehensive input dataset might allow to further increase
the number of identified sibling prefixes in the Internet.

Choosing the right prefix size: With SP-Tuner we present an
algorithm to fine-tune the CIDR size of sibling prefixes to achieve
even higher Jaccard similarity values. Although we mostly use the
/28 and /96 pairs as the SP-Tuner thresholds in this study, options
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in selecting any pair of thresholds make SP-Tuner flexible, and
allow to choose appropriate prefix size thresholds based on the
need to further fine-tune the resulting sibling prefixes. While this is
a good first step in finding well suited prefix sizes, it is not a silver
bullet. IPv4 address exhaustion [47, 48] leads to smaller and smaller
prefixes being allocated by RIRs, which in turn then leads to more
and more fragmentation of the IPv4 address space. Furthermore,
identifying the “right” prefix size remains a challenge, especially in
IPv6 [26]. These factors make it exceedingly challenging to identify
sibling prefixes. Therefore, it might be useful to look into sibling
prefix set pairs, i.e., a set of IPv4 prefixes which are siblings of a
set of IPv6 prefixes. This could alleviate challenges such as address
space fragmentation by pairing different IPv4 fragments with their
IPv6 counterpart. We leave the analysis of sibling prefix set pairs
to future work.

Domains instead of addresses: Moreover, some network archi-
tectures have shifted away from owning dedicated IP addresses for
their services, instead sharing the same IP prefixes for their services
and across multiple data centers [30, 38]. Therefore, identifying sib-
ling prefixes in the Internet will help network operators around the
globe to make more informed decisions, such as applying similar
routing policies for a set of domains running on IPv4 and IPv6 as
sibling prefix pairs. Sibling prefixes enable to allow, block, filter, or
otherwise differentiate a group of domains collectively based on
their prefixes. One example application of sibling prefixes is the
adaption of IPv4 spam blocklists to IPv6, which closes the backdoor
for spammers to switch to IPv6 if they are blocked on IPv4. Further-
more, a list of sibling prefixes with high Jaccard values could help
the research community to more easily adapt their IPv4 analysis
technique to IPv6. Therefore, we plan to regularly publish a list of
sibling prefixes to be used by network operators and researchers at

sibling-prefixes.github.io.

7 Conclusion

In this paper, we provided a thorough analysis of sibling prefixes in
the Internet by applying the Jaccard similarity index on dual-stack
domains. We introduced the SP-Tuner algorithm that identifies
and fine-tunes IP prefix sizes resulting in tailored sibling prefixes
having higher Jaccard values and smaller CIDR sizes. With SP-
Tuner we were able to improve the share of perfect match sibling
prefixes from 52% to 82%. We found that more than half of sibling
prefixes belong to the same organizations, with the majority being
associated with IT companies. We found sibling prefixes to be
relatively stable over time and to be prevalent in 24 hypergiant and
CDN networks. Sibling prefixes showed similar RPKI adoption rates
as other prefixes, we did however find instances with inconsistent
ROV status between IPv4 and IPv6 prefixes of sibling pairs. Finally,
we plan to regularly publish sibling prefix lists for researchers and
operators.
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Algorithm 2 SP-Tuner-LS (Less Specific)

Data: DS domains, IPv4_addresses, IPv6_addresses, sibling prefix pairs, Jaccard similarity
Result: Refined sibling prefix pairs with improved Jaccard similarity
Initialization:
tree_v4 < {DS_domains, IPv4_addresses}
tree_v6 < {DS_domains, IPv6_addresses}
curr_jacc < precomputed non-zero value
prefix_v4_len_thresh > IPv4 prefix length threshold: 1 levels up
prefix_v6_len_thresh > IPv6 prefix length threshold: 4 levels up
for (sibling_prefix_v4, sibling_prefix_v6) € sibling_prefix_pairs do
2: tree_v4 < sibling_prefix_v4
tree_v6 < sibling_prefix_v6

4: new_jacc < 0
while new_Jjacc < curr_Jacc do

6: prefix_v4_superprefixes < GetNextSuperprefixes(sibling_prefix_v4)

prefix_v6_superprefixes < GetNextSuperprefixes(sibling_prefix_v4)
8: for (prefix_v4, prefix_v6) € {prefix_v4_superprefixes, prefix_v6_superprefixes} do

new_Jacc < max(Jaccard(prefix_vd, prefix_v6))
10: if (IsASnumChange(prefix_v4)) || (IsASnumChange(prefix_v6)) then
return (prefix_v4, prefix_v6)
12: else if (prefix_v4_len < v4_len_thresh)
|| (prefix_v6_len < v6_len_thresh) then
14: return (prefix_v4, prefix_v6)
A Appendix

A.1 SP-Tuner-LS (Less Specific)

Algorithm 2 with the name SP-Tuner-LS shows the traversal of each
tree in the upward direction from the point of prefix inserts. At
every step, it generates the supernet of the current prefix and checks
Jaccard similarity until improvement occurs. Another point to check
at every step of going up is the AS number; this might happen
when generating the supernet of a prefix, causing the originating
AS number to change. To address this, leverage the RouteView data
for that specific date, ensuring the same date as our input data.

The Figure 22 shows the results of applying SP-Tuner-LS. Using
this approach and increasing the prefix sizes for fine-tuning the
sibling prefixes does not improve the Jaccard similarity values, as
depicted by the green line in Figure 22. However, the blue line
indicates that setting a threshold on the prefix sizes for how much
they could be increased does not result in a significant improvement
in Jaccard similarity.

A.2 SP-Tuner-MS Sensitivity Analysis

To achieve an improved Jaccard similarity, we conduct a sensitivity
analysis to evaluate the behavior of SP-Tuner-MS under various
prefix length thresholds. The results of these tests, performed on
IPv4 prefixes ranging from /16 to /31 and IPv6 prefixes ranging from
/32 to /124, is illustrated in Figure 19. In each cell, the top value
represents the mean Jaccard similarity across all sibling prefixes,
while the bottom value indicates the standard deviation of the
Jaccard values.

A.3 Detail Analysis of Hypergiants and CDNs of
Sibling Prefixes

Figures 23 and 24 and Figure 25 shows a detaild information of
distribution of Jaccard similarity values for sibling prefixes in HGs,
CDNes, for the default case as observed in BGP, using /24-/48 thresh-
olds, and the /28-/96 thresholds of SP-Tuner algorithm.

A.4 Detail Analysis of Business Type of Sibling
Prefixes

As a detailed information on the business types of the origin ASes of
sibling prefixes explained in Section 4.6, we consider the following
two cases:
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A.4.1  Origin AS of Sibling Prefixes for Business Type Analysis . In
this case, instead of counting the number of sibling prefixes, we
count the number of unique origin AS pairs of the sibling prefixes.
This analysis helps overcome the possible influence of a few origin
ASes that might contribute to many sibling prefixes. While we still
have both the ASdb and sibling prefixes data from January 2024,
we exclude cases where the IPv4 and IPv6 prefixes of a sibling
prefix pair have the exact origin AS number. Figure 20 illustrates
the number of origin AS pairs for various business types of the
origin ASes. The x-axis represents the business type of the IPv4
prefix origin AS, and the y-axis represents the business type of the
IPv6 prefix origin AS.

The overall heatmap pattern for the count of origin AS pairs
of sibling prefixes is very similar to the Figure 16 in Section 4.6
explained for the number of sibling prefixes. As it can be seen
in Figure 20, the largest pair of ASes, more than one thousand
pairs shown in light yellow color, are the cases where both origin
ASes are It organizations. The origin AS pairs having an Education
business type are the second largest group or origin AS pair for
sibling prefixes. The row and column of cells for the IT business
are colored, while the majority of other cells are empty, indicating
that at least one of the origin ASes for the sibling prefixes is an
IT organization. We can conclude that even if we consider a pair
of unique origin ASes for the sibling prefixes in the business type
analysis, the overall takeaway of the business type explained in
Section 4.6 still holds.

A.4.2  Unfiltered Sibling Prefixes for Business Type Analysis. Finally,
we do not filter the cases where both prefixes in a sibling prefix
pair have the same origin AS number. The idea is to provide a more
inclusive picture of the sibling prefixes even if both origin AS have
the same AS number. We want to understand the business types
of those origin ASes and how much this affects the analysis we
explained Section 4.6.

Figure 21 shows the business type analysis for all the sibling
prefixes as observed in January 2024. We notice that the highest
number in the color bar on the right side of the plot is increased from
the range of one thousand, shown as 1K, to more than ten thousand,
shown as 10K. The high number of sibling prefix pairs is because
many sibling prefixes with the exact origin AS number are included
in the data and as explained in Section 4.5. Another significant
difference in Figure 21 comparing to Figure 20 and Figure 16 in
Section 4.6 is the diagonal line of colorful cells. The sibling prefix
pairs having the exact origin AS fall into the diagonal line, as both
origin AS numbers fall into the same type of business. As a result,
we see the diagonal line of the colorful cell in the heatmap in
Figure 21. However, the cell having the highest number of sibling
prefixes, more than ten thousand sibling prefix pairs, shown in
light yellow color, still belongs to the IT organizations, which are
high in number but similar to the previous analysis of the business
type of the origin ASes for sibling prefixes. The IT organization has
an overall higher number of sibling prefixes on the corresponding
row and column, indicating that one of two origin ASes of sibling
prefixes falls into the IT business type. The result is similar to all
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Figure 19: Heatmap of SP-Tuner Algorithm Performance:
Mean Jaccard Index (top) and Standard Deviation (bottom)
across IPv4 (x-axis) and IPv6 (y-axis) CIDR size thresholds.

previous analyses concerning the business type of the origin ASes
for sibling prefixes.

A.5 Over Time Analysis of Sibling Prefixes

Figure 26 illustrates over time Jaccard similarity changes for sibling
prefixes for the default case, Figure 27 for the SP-Tuner with a
/24-/48 threshold case. On the other hand, Figure 28 illustrates
the impact of the SP-Tuner algorithm with a /24-/48 threshold on
Jaccard similarity of sibling prefixes for various data snapshots over
time.

A.6 Origin ASes of Sibling Prefixes

Figures 29 and 30 depict the number of sibling prefixes over time
for the same and different organizations in bars, the lines present

the number of unique IPv4 and IPv6 prefixes for the default case
and the SP-Tuner case with /24-/48 thresholds. On a similar order of
sibling prefixes for the default and SP-Tuner case, Figures 31 and 32
show the median Jaccard value changes over time for both cases.

A.7 Domains and CIDR sizes of Sibling Prefixes

In Figure 33 and Figure 34, we illustrate the percentage of sibling
prefixes based on the number of domains for the default and the /24-
/48 thresholds of SP-Tuner algorithm. Finally, we end the appendix
of the paper by showing the subnet/CIDR sizes of sibling prefixes
for the SP-Tuner algorithm with /24-/48 thresholds in Figure 35 and
for /28-/96 thresholds in Figure 36.
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and non-CDN-HG for the SP-Tuner thresholds of /28-/96.
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