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ABSTRACT
Domain-based top lists such as the Alexa Top 1M strive to portray
the popularity of web domains. Even though their shortcomings
(e.g., instability, no aggregation, lack of weights) have been pointed
out, domain-based top lists still are an important element of Internet
measurement studies.

In this paper we present the concept of prefix top lists, which
ameliorate some of the shortcomings, while providing insights into
the importance of addresses of domain-based top lists. With prefix
top lists we aggregate domain-based top lists into network prefixes
and apply a Zipf distribution to assign weights to each prefix. In
our analysis we find that different domain-based top lists provide
differentiated views on Internet prefixes. In addition, we observe
very small weight changes over time. We leverage prefix top lists
to conduct an evaluation of the DNS to classify the deployment
quality of domains. We show that popular domains adhere to name
server recommendations for IPv4, but IPv6 compliance is still lack-
ing. Finally, we provide these enhanced and more stable prefix
top lists to fellow researchers which can use them to obtain more
representative measurement results.

CCS CONCEPTS
• Networks → Network measurement.
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1 INTRODUCTION
An important step before conducting any Internet measurements
is the process of target selection. Examples of selected targets can
be the complete Internet (which is not feasible in IPv6 [11, 12]), a
subset of targets based on random sampling, or use of domain-based
top lists to gather suitable targets. The latter method is used by
many Internet measurement research papers, which leverage the
Alexa Top 1M [2] and other top lists like Majestic [17] or Umbrella
[8] in order to obtain a representative sample of the hosts in the
Internet. Previous research has shown that top lists are notoriously
unstable [21]. In addition, domain-based top lists lack any form of
aggregation in terms of the underlying infrastructure or service,
i.e., google.com and google.co.uk are separate top list entries
although providing the same service by the same company. Another
issue with current top lists is the lack of weighting for each entry,
i.e., it is not clear how much more popular entry #11 is compared
to entry #12 [3].

In this paper we propose a new technique to associate IP prefixes
with a weight which represents the importance of each prefix.

As the name suggests, prefix top lists consist of network prefixes
instead of domains. This allows using prefix top lists in measure-
ment studies which go beyond the scope of domain-based top lists.
We create prefix top lists by using domain-based top lists as the
initial data source, mapping the domains to IP addresses and subse-
quently aggregating these IP addresses to prefixes. We apply a Zipf
popularity distribution to each domain of the top lists to provide
weights for each address, subsequently aggregating the weights for
each prefix, and finally ranking the prefixes.

Prefix top lists can be leveraged in many different types of In-
ternet measurement studies, e.g., finding the top CDN networks,
evaluating the Internet’s infrastructure, or analyzing dependencies
of important core Internet routers. In this paper we present an
analysis of the DNS name server deployment using prefix top lists.
To further foster the use of prefix top lists we make them available
to fellow researchers at https://prefixtoplists.net.in.tum.de/.
Outline: The paper is structured as follows: In Section 2 we present
our idea of creating prefix top lists and provide details on the process
involved. We analyze churn and temporal stability of prefix top
lists and compare them to domain-based top lists in Section 3. In
Section 4 we apply prefix top lists to DNS analysis by evaluating
DNS server characteristics based on their weight in prefix top lists.
Section 5 lays out our key findings and discusses their implications.
We compare our study to related work in Section 6 and conclude
our paper in Section 7.
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Rank Domain Weight Top Rank Bottom Rank

1 google.com 0.0703 1 1
2 youtube.com 0.0351 2 2
3 tmall.com 0.0226 3 4
4 baidu.com 0.0184 3 4
5 qq.com 0.0134 5 6
6 sohu.com 0.0120 5 8
7 facebook.com 0.0099 7 8
8 taobao.com 0.0092 6 9
9 login.tmall.com 0.0077 8 10
10 wikipedia.org 0.0069 9 11

Table 1: Top 10 Domains for August 1, 2019 with 7-day rolling
window based on the Alexa List.

2 PREFIX TOP LIST
In this section we present our approach of prefix top lists. First, we
elaborate on existing domain top lists. Then we provide details of
our DNS address resolution approach. Finally, we present a top list
aggregation based on IP prefixes.

2.1 Domain Top List
Existing top lists rank their entries based on some proprietary
metric. The applied process and raw data sources are not publicly
available. They also exhibit—often weekly—fluctuations [21].

Previous work [15] suggests merging multiple existing top lists
to create more stable top lists. This can be done by averaging each
top list over multiple days, creating a more stable version of the
same list. As popularity in the Internet has been known to follow a
Zipf distribution [1, 6, 13, 14], differently ranked input lists can be
combined by aggregating their Zipf weight. The Zipf weightw for
rank k in a total of N elements is calculated as follows:

w =
1/ks∑N
n=1 1/ns

The parameter s determines the slope of the distribution, larger
values for s increase the weight for the top-ranking elements, while
reducing the weight for low-ranking elements. The specific param-
eters which contribute to the ranking of domains in the underlying
lists are not universally available. Based on previous work [15], we
use a parameter of s = 1.

We extend this approach by not only using the Zipf distribution
to assign the rank in the combined top list, but also to transfer the
weight to the resulting top list for further analysis. The different
input top lists are joined based on domain names, and the average
weight is calculated. If a domain name does not appear in an input
list, it is implicitly assigned a weight of 0.

Our Zipf-weighted input list is created by averaging the input
top lists’ Zipf weights over the previous week. This approach was
chosen to mitigate weekly fluctuations.

This weighted list is called a domain top list. The domain top
list for August 1, 2019, based on the Alexa list, is shown in Table 1.
We analyze the stability of those lists in Section 3.

2.2 Address Resolution
In order to create prefix and AS based top lists, the domain names
need to be resolved.

For collecting a rich DNS data set as part of this process, we
deploy a custom DNS resolver. This full resolver discovers the zone
setup by help of QNAME minimization (cf. RFC 7816 [7]). To get a
complete picture of the DNS deployment, our full resolver queries
all available authoritative name servers for each query. The name
servers for each zone are discovered by (1) name in the delegation
from the parent zone, (2) trustworthy (in bailiwick) glue records in
the delegation, and (3) additional NS records in the zone apex (also
called root domain or naked domain). The individual name server
names are resolved by the same process. The executed queries
against the authoritative name servers and the individual zone
setups are saved including their metadata.

Compared to traditional resolvers, this allows for in-depth inves-
tigation of the zone setup and name servers.

All domains of the daily domain top list are resolved every day
in a randomized order. For fault isolation, the resolution process
is split into multiple shards. The domains are resolved over the
course of 24 hours in order to avoid high load spikes on shared
authoritative name servers.

The following shards are scanned and later merged into a single
data set:
Umbrella t0: the Umbrella top list for today
Alexa t0 ∪ Majestic t0: the deduplicated union of the Alexa and

Majestic top list for today
Backfill:

⋃−6
n=−1 Alexa tn , Majestic tn , Umbrella tn \ (Alexa t0 ∪

Majestic t0 ∪ Umbrella t0): the set of domains which were
contained within the top lists over the last week but are
currently no longer included in the top lists.

After the zones and domain names have been resolved, the IP
addresses are extracted. If a domain points to multiple IP addresses,
we extract all of them. This can occur for two reasons: An author-
itative name server can return multiple IP addresses as target or
different authoritative name server can return distinct IP addresses.
For the rest of this work, these addresses are treated equally. Since
the domain lists are only resolved from a single vantage point, this
resolution process represents a local view and is susceptible to
DNS-based load balancing. We discuss DNS-based load balancing
and its effects on prefix top lists in Section 5.

2.3 Prefix-based Top Lists
For the generation of prefix-based top lists, different aggregation
levels can be chosen: ASes, BGP announced prefixes, and normal-
ized prefixes. Normalized prefixes are /24 prefixes (/48 for IPv6
resp.), as they represent the smallest generally propagated BGP
announcements. The aggregation levels are hierarchical, with each
normalized prefix belonging to one BGP announced prefix, and
each BGP announced prefix belonging to one AS. For the assign-
ment of BGP prefixes and their respective origin AS, a localized
BGP dump is used. When the prefix has multiple origin ASes, we
take the lower AS number from the possible paths.

For the aggregation and ranking on different levels, the weight
of an input domain is transferred based on the resolved mappings.
In case multiple objects are reached (i.e., a domain resolves to
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Rank
AS BGP Norm Object Weight Domains IPs

1 AS15169 – GOOGLE 0.1454 103264 15278
1 1 172.217.18.0/24 0.0178 1039 35
2 2 172.217.16.0/24 0.0175 1000 33
3 3 172.217.22.0/24 0.0173 1041 42
4 216.58.206.0/23 0.0165 973 35

6 216.58.207.0/24 0.0151 726 21
5 5 172.217.23.0/24 0.0164 775 23
7 7 216.58.208.0/24 0.0154 443 14
10 216.58.204.0/23 0.0098 547 15

10 216.58.205.0/24 0.0097 547 15
2 AS13335 – CLOUDFLARE 0.1049 310574 91869

28 23.227.38.0/23 0.0045 42809 13
25 23.227.38.0/24 0.0045 42809 13

3 AS16509 – AMAZON-02 0.0651 88373 70888
20 99.84.88.0/21 0.0057 11988 168

18 99.84.92.0/24 0.0054 11951 132
4 AS37963 – CNNIC-ALIBABA 0.0478 7266 6733

6 140.205.64.0/18 0.0160 6 4
4 140.205.94.0/24 0.0159 3 2

9 140.205.128.0/18 0.0116 12 12
9 140.205.130.0/24 0.0113 1 1

5 AS54113 – FASTLY 0.0284 16752 887
16 151.101.0.0/22 0.0063 4566 192

30 151.101.1.0/24 0.0032 2895 76
6 AS14618 – AMAZON-AES 0.0248 46028 33443

175 54.234.0.0/15 0.0008 434 295
127 54.235.145.0/24 0.0006 2 2

7 AS23724 – CHINANET 0.0238 866 821
14 220.181.32.0/19 0.0092 9 5

13 220.181.38.0/24 0.0092 7 3
8 AS4837 – CHINA169 0.0150 457 451

8 111.160.0.0/13 0.0134 3 4
8 111.161.64.0/24 0.0134 1 2

9 AS8075 – MICROSOFT 0.0141 21685 10035
38 13.64.0.0/11 0.0034 3941 1992

59 13.82.28.0/24 0.0016 10 1
10 AS9808 – CMNET-GD 0.0138 81 77

12 39.156.0.0/17 0.0096 7 3
14 39.156.69.0/24 0.0092 6 1

Table 2: IPv4 Object Ranking for August 1, 2019 based on
Alexa List. If both BGP- and Norm-Rank are provided the
weight is given for the BGP prefix. Theweight for the normal-
ized prefix can differ due to varying splitting of the domain
weights if multiple objects are reached.

multiple prefixes), the input weight is split between the targeted
prefixes. This serves to keep the sum of weights at one (100%). An
alternative would be to copy the weight to all prefixes. This variant
is susceptible to manipulation: a domain can point to a multitude
of prefixes and each gets the full zone weight. High ranking zones
with fewer addresses would have less influence on the prefix top
list. To remediate these problems, we decided to split the weight.

We generate our prefix top list by aggregating IP addresses to
prefixes with the Zipf weights of a domain top list.

The rankings for the top 10 ASes, BGP prefixes, and normalized
prefixes are shown in Table 2. For each object, we include the top
ranked children, if applicable. The /24 norm-prefixes are weighted
and ranked by summing up the weight of all domains pointing to
them. Norm-prefixes are assigned to their AS by mapping them to
announced BGP prefixes. The AS weight (and therefore its rank)
is the sum of the BGP prefix weights. For example, the domain
tmall.com transfers its weight of 0.0226 from Table 1 to its A-records
which are in the prefixes 140.205.94.0/24 and 140.205.130.0/24.
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Figure 1: Coverage runup of discovered prefixes by prefix top
list (PTL) per IP version over time.

The resulting rankings are our Prefix Top Lists, which present a
novel view on the importance of IP prefixes in the Internet.

The ranking does not only export the weight, but also exports
how many domains point into the respective object, as well as how
many distinct IP addresses of those objects are referenced. Notably,
some ASes have many domains pointing to them (e.g., Cloudflare).
Other ASes also have a high rank but host only few comparatively
high-ranked domains (e.g., CNNIC-ALIBABA).

3 ANALYZING PREFIX TOP LISTS
In this section we analyze prefix top lists based on BGP announced
prefixes (1) by evaluating the increase caused by daily new prefixes
added to prefix top lists and (2) by comparing their stability over
time to regular domain-based top lists.

3.1 Daily New Prefixes
We first evaluate prefixes which have not yet been seen before for
each prefix top list. This analysis shows how much data needs to
be collected over time to achieve good prefix coverage.

In Figure 1 we depict the incremental coverage of generated pre-
fix top lists for each day. We find that all prefix top lists contribute
multiple ten-thousands of IPv4 prefixes and multiple thousands of
IPv6 prefixes on the first day. The share of prefixes seen on the first
day compared to all prefixes seen over the measurement period,
differs by source. We find that Alexa provides the best coverage of
IPv4 prefixes, whereas Umbrella covers most IPv6 prefixes. Inter-
estingly, Majestic has the lowest coverage in IPv4 as well as IPv6
and sees almost no increase over time. New prefixes are still added
even after five month of measurements (e.g., ≈ 200 for Alexa IPv4
and Umbrella IPv4). These new trends are side-effects of the highly
volatile nature of domain-based top lists [21], the initial source of
prefix top lists.

When looking at Figure 2 we see that the new prefixes added
after the first day stem with few exceptions, such as wikipedia.org
on June 27, 2019, from low-ranked domains. The figure shows the
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Figure 2: Cumulative Zipf weight of new prefixes per prefix
top list (PTL) over time. The jump on June 27, 2019 is caused
by previously unseen prefixes for Wikipedia.

empirical CDF of the sum of Zipf weights added by new prefixes
over time, i.e., it displays how important the newly added prefixes
are. Newly added prefixes generally host low-ranked domains as is
evident by the Zipf weight increase of less than 0.014 over more
than one month of measurements and 0.045 in five months. We
also find that new prefixes in the Umbrella-based prefix top lists are
about four times less important in terms of aggregated Zipf weight
over time compared to Alexa and Majestic.

We conclude that prefix top lists see hundreds to thousands of
new prefixes being added even after multiple weeks. These pre-
fixes, however, stem from low-ranked domains, while high-ranked
prefixes are added on day one.

3.2 Temporal Stability
Next, we assess the stability of different domain and prefix top lists
over time. To account for weekly patterns, which have been shown
to be present in top lists [21], we aggregate domain and prefix top
lists in a seven-day rolling window. We then calculate the daily Zipf
weight change for each domain and prefix, respectively.

Figure 3 shows the daily Zipf weight change during our four-
month measurement period. To better illustrate the magnitude of
changes, we lay out the following example: Assume, on Monday
the complete Zipf weight of 1.0 is given to prefix A, whereas on
Tuesday the complete Zipf weight of 1.0 is given to prefix B. This
constitutes a change of -1 for prefix A and a change on +1 for prefix
B. In this example the daily Zipf weight change between Monday
and Tuesday is 2, which is the maximum possible Zipf change per
day.

As seen in Figure 3, Zipf weight changes are much more subtle in
reality. None of the domain and prefix top lists sees consistent Zipf
weight changes above 0.1. The least stable top list is the domain-
based Alexa top list, which confirms findings in related work [21].
The most stable top list is the IPv6 prefix top list based on Umbrella.
We find that IPv6 prefix top lists are especially stable. The Alexa and
Majestic-based prefix top lists are comparatively volatile. This is
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Figure 3: Daily Zipf weight changes for domain and prefix
top lists (PTLs) over time.

likely due to high-weight domains performing DNS load balancing,
which leads to Zipf weights being shifted to different prefixes.

To summarize, Zipf weight changes in all top lists are much
smoother compared to raw domain-based top lists, with less than
0.1 of weight changes. The Alexa domain top list is the least stable,
whereas IPv6 prefix top lists exhibit the greatest stability. The Alexa
domain top list became even more unstable over time, especially
since it often includes less than 1M domains. Starting from July
14, 2019, the list contains only about 600k to 950k domains. We
assume, that this is likely due to Alexa updating its generation
method and dropping the tail of domains with unreliable ranks.
The lower number of domains is automatically accounted for in
our Zipf weighting. The sum of all weights remains 1, therefore
the importance of domains is dynamically adjusted to the number
of provided domains. Nevertheless, adding or deleting up to 300k
domains from one day to another results in the discovered artifacts.

4 NAME SERVER ANALYSIS
In this section we analyze the name server records collected by our
DNS scanner. The evaluation is on data from August 1, 2019.

RFC 2182 requires that each zone has topologically different
name server IP addresses to ensure resilience against routing is-
sues [10]. This means the addresses should be at least in two dif-
ferent normalized prefixes for each used IP version. We use the
results of our DNS scanner to determine if the zones of the top list
domains comply with this requirement. In Figure 4 and Figure 5
we sort the domains according to their top list rank and the rank
of the prefix they are in. In order to make the graphs comparable
the x-axis represents the share of ranks per top list (see Table 3 for
total numbers).

Figure 4 shows the domain based top list results. The relative
graphs for all top lists and both IP versions are similar. Their distri-
bution of non-compliant zones is nearly linear. Thus, compliance to
the RFC requirement seems to be independent from the top list rank.
We evaluate the Top 1k zones, which are not visible in the graph
as they represent less than 0.1% of all zones. In this analysis we
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Alexa Majestic Umbrella

IPv4 IPv6 IPv4 IPv6 IPv4 IPv6

Domains 2.9M 1.4M 1.0M 505k 327k 206k
Non-compliant 411k 610k 121k 250k 26k 81k
Share 14.26% 43.54% 12.08% 49.56% 8.03% 39.52%

Table 3: Non-compliance of domains per top list.
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Figure 4: Distribution of non-compliant zones ordered by
their rank. The x-axis is normalized to the number of do-
mains per top list. The absolute number for the axes can be
found in Table 3.
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Figure 5: Non-compliant zones ranked by the prefix they are
in. Similar to Figure 4 the x-axis also got normalized to the
number of successful resolved domains.

find that 2.3% of the Alexa Top 1k are violating zones. The Majestic
and Umbrella evaluation show similar results. For domains beyond
rank 1000 we observe a steep increasing share of non-compliant
domains, until the stable value becomes visible in the figure. Smaller
variations in the lower ranks may be caused by clustering effects
in top lists described by Rweyemamu et al. [20].

In total, we find 12% of all IPv4 zones not respecting the RFC
requirement. This aligns with findings by Allman [4]. For domains
with IPv6 name servers, about half of all entries do not comply with
the RFC requirement (see Table 3). We find that even the top Alexa
entries google.com and youtube.com violate the RFC requirement
for IPv6. In comparison, for IPv4 the first offender is on rank 89
(w3schools.com) followed by rank 95 (onlinesbi.com) and rank 111
(ettoday.net).

Even though Google only hosts a small share of domains, the
importance of these domains corresponds to a large Zipf weight.
Cloudflare on the other side hosts more than 300k zones of the
Alexa list. Our results show that Cloudflare uses a single /48 for
their IPv6 name servers. United Internet, again one of the top five
providers, also uses a single /48 for their IPv6 name servers. These
three providers are among the most important ones in our prefix
top list. The fact that even these are non-compliant indicates a
general problem with the topological diversity of configured IPv6
enabled name servers.

Figure 5 shows the domains sorted by the rank of the highest-
ranking normalized prefix. In comparison to Figure 4, the IPv4
prefix sorted domains provide a smaller share on the top ranks.
While the domain top list ranked violations grow linearly from the
start, the prefix sorted ones start with a near linear growth only
after about 30%. The short and steep increase for Umbrella at about
35% is caused by the domain parking service Bodis. We assess the
DNS availability of parked domains as not critical. Parked domains
by this provider also appear in the Alexa and Majestic list but on
lower ranks. This is due to Umbrella reflecting the Cisco OpenDNS
query count while the other use a more complex metric.

This analysis shows that the topological diversity of configured
name servers supporting IPv6 is in a worse state compared to IPv4.
Nearly half of all zones have name servers in only one /48 prefix.
With this analysis we also provide a metric to compare different top
lists according to the deployed configurations. When evaluating
the RFC requirement on the stricter BGP prefixes we found similar
results as with normalized prefixes. We provide a list of prefixes
with the number of non-compliant zones to interested researchers.
This list can be used for prefix prioritization or comparisons.

5 DISCUSSION AND LIMITATIONS
In this section we present the key results of our prefix top list
approach and discuss implications, limitations, detail our guiding
ethical considerations, and elaborate on data publication.
Prefix Top List stability and global view: As described in Sec-
tion 2 we provide a local view with our prefix top list. Furthermore,
as shown in Section 3, the prefix top lists are influenced by fluctua-
tions in domain-based top lists as well as DNS load balancing. To
further improve our resulting prefix top list in terms of stability
and global applicability, we propose to perform distributed DNS
measurements and repeatedly resolve popular domains to cover a
larger share of their prefixes.
DNS-based load balancing: In order to gauge the impact of geo-
load balancing on the prefix top list, we performed limited measure-
ments using commercial virtual machines in Newark and Singapore.
The measurements on these vantage points include only the top 65k
domains from each of the three domain-based top lists. Analyzing
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the Alexa-based top list, we find that the additional vantage points
were able to resolve only about 90% of domains compared to our
local vantage point. Further analysis is needed to understand this
divergence. Within the successfully resolved domains, 7% resolve
to different IPv4 addresses on at least one vantage point. When
aggregated to the normalized prefix level, the smallest object in the
prefix top list, only 5% of domains differ in their result.

In order to rate the impact of these differences, we recalculate
the AS-, BGP- and normalized prefix ranking by integrating the
additional addresses. As mentioned in Section 2.3, the base weight
for a domain name is shared between the resolved prefixes. We
compare the rankings by the sum of the absolute differences be-
tween the two variants (local view, vs.semi-global view), similar
to Section 3.2, i.e., 0 indicates no changes, while 2 stands for two
completely different lists. For the AS ranking we observe a Zipf
weight change of 0.0133. With respect to the BGP- and normalized
prefix based top lists we observe a change of 0.2244 and 0.2266,
respectively. The observed change for the normalized prefixes is
only slightly larger than for the BGP prefix. This can indicate that
address changes for load balancing purposes target different BGP
announcements as well. The low change rate with respect to the
AS ranking indicates that the load balanced domains are, however,
served from within the same AS. Those are strong indicators for
DNS-based geo-load balancing.

The impact of DNS geo-load balancing is clearly visible, and
it needs to be taken into account when using this prefix top list.
The two additional measurements of a subset of domains provide a
lower bound estimation to what impact needs to be expected. To
this goal, the measurements have to be scaled up to continuously
cover the entire domain lists. Moreover, additional vantage points
help to further investigate the impact of geo-load balancing.
Localized BGP dump: From the BGP dump we extract the origin
prefix and AS number. The path is not relevant for our results. We
compared the results of our BGP dump to archives of the Route
Views project [18]. Only about 1% of the Top 1k IPv4 BGP prefix
top list entries changes. These changes are substitutions of larger
prefixes with smaller ones. In IPv6 this effect is more prevalent
as the address space is larger, thus there are more possibilities for
more specific prefix announcements. These larger prefixes in our
top list have a minor impact on the total list. In the future, we plan
to merge different BGP dumps using only the longest originating
prefixes across all of them.
Web-based top lists: In order to improve the prefix top list gener-
ation, the shortcomings of the generation of proprietary top lists
have to be considered. The Alexa and Majestic top lists provide
a web-centered view on the Internet, which does not necessar-
ily represent the importance of generic Internet infrastructure. A
prefix top list based on the Umbrella top list, which is generated
from OpenDNS statistics also provides a biased view created by
OpenDNS users. The top lists do not include the www prefix by
default. The www subdomain DNS records can resolve to differ-
ent addresses. We plan to perform such measurements in order to
quantify the impact on the prefix top lists.
DNS resilience: As shown by Allman [4] and confirmed by our
measurements in Section 4, the resilience of the DNS ecosystem
in terms of topologically distributed name servers warrants im-
provements. Especially on the IPv6 side, half of all zones with

IPv6 name server addresses have less than two distributed name
server prefixes—contrary to what is mandated by best current prac-
tices [10]. Even the most popular domains such as google.com and
youtube.com are affected. For clients with IPv6-only resolvers, this
results in a decreased resilience compared to their IPv4 peers.
Ethical considerations: For our active measurements we incor-
porate the proposals by Allman and Paxson [5], Partridge and
Allman [19], and Dittrich et al. [9]. As we limit our query rate and
use conforming packets, we conclude that it is unlikely that our
measurements will cause problems on target systems. During our
measurement period, we received no abuse emails or complaints.
Data publication: We provide our prefix top list for fellow re-
searchers on https://prefixtoplists.net.in.tum.de/.

6 RELATEDWORK
In the following section we present work in the fields of top lists
and DNS analysis which is most related to ours.
Top List analysis: In 2018, Scheitle et al. [21] published a thorough
analysis of different domain-based top lists. They analyze structure
and stability of top lists where the authors find low intersections
between lists and daily domain churn of up to 50%. In addition, they
also show that measurement studies using top lists depend on the
top lists themselves and on the dates of the used top lists. Taking
these findings into account, we rank domain-based top lists using
a Zipf distribution and aggregate them based on prefixes, which
results in more representative and stable prefix top lists.

Le Pochat et al. [15] confirmed many of Scheitle et al.’s findings.
With Tranco [16] they provide an aggregated combination of other
top lists over time. In addition to their work we apply a Zipf distri-
bution to rank domains based on popularity and aggregate prefixes
to create prefix top lists.
DNS analysis: Allman [4] analyzes DNS robustness over a period
of nine years. He finds a downwards trend of second level domains
with fewer than two name servers in distinct /24 prefixes in his zone
data analysis. In 2018 he finds that 11% of second level domains
violate RFC robustness requirements. With 12% we find a similar
share of domains in top lists not complying with the robustness
requirements. Our data also shows that the domains on the top
ranks perform better.

7 CONCLUSION
With prefix top lists we proposed a Zipf-weighted aggregation
of popular and distributed services (such as CDNs) into a single
metric. We showed temporal stability and found less than 0.05
weight changes per day, improving on the Alexa top list. When
analyzing name server resilience, we found top domains to be
better configured. Finally, IPv6 resilience still lags behind its IPv4
counterpart.
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