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ABSTRACT
Honeypots have been used for decades to detect, monitor, and
understand attempts of unauthorized use of information systems.
Previous studies focused on characterizing the spread of malware,
e.g., Mirai and other attacks, or proposed stealthy and interactive
architectures to improve honeypot efficiency.

In this paper, we present insights and benefits gained from col-
laborating with an operational honeyfarm, i.e., a set of honeypots
distributed around the globe with centralized data collection. We
analyze data of about 400 million sessions over a 15-month pe-
riod, gathered from a globally distributed honeyfarm consisting
of 221 honeypots deployed in 55 countries. Our analysis unveils
stark differences among the activity seen by the honeypots—some
are contacted millions of times while others only observe a few
thousand sessions. We also analyze the behavior of scouters and in-
truders of these honeypots. Again, some honeypots report orders of
magnitude more interactions with command execution than others.
Still, diversity is needed since even if we focus on the honeypots
with the highest visibility, they see only a small fraction of the
intrusions, including only 5% of the files. Thus, although around 2%
of intrusions are visible by most of the honeypots in our honeyfarm,
the rest are only visible to a few. We conclude with a discussion of
the findings of work.
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1 INTRODUCTION
Honeypots are network-connected systems that are deployed to
detect and monitor attempts for unauthorized access, command
execution, and control of information systems. Honeypots have
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been used for decades as a security mechanism [38, 47] as well as to
shed light on the security status of networks, discover new threats,
and to investigate attack strategies in the wild [26, 34, 35, 44]. Hon-
eypots can either be deployed alongside production systems to
inform network administrators about specific attack strategies, or
in the wild to detect more attack campaigns. Usually, honeypots
record metadata (e.g., client IP address, port numbers) as well as
behavioral data (e.g., executed commands, communication with
other devices, created files). Honeypots have been very successful
in analyzing malware code and practices, e.g., Mirai [1, 18].

Today, a myriad of honeypot software is freely available [2, 9,
13, 39]. There are also commercial companies that run large col-
lections of honeypots (called “honeyfarms”), e.g., GreyNoise [51],
NetScout [36]. These companies use the honeypots to gather in-
formation that is then used as one of the input for their security
products. However, the data gathered by these systems is usually
unavailable to researchers and/or the public. Therefore, it remains
unclear what these honeyfarms see and if the view of a single hon-
eypot differs substantially from those of the full honeyfarm. Note,
getting information about honeypots or honeyfarms is difficult, as
most operators–both commercial and research–prefer to keep the
system hidden to be able to catch further data.

For this paper, we use the unique opportunity to work with
Global Cyber Alliance (GCA) [17], a major non-profit honeyfarm
operator. In collaboration, we analyze data from a large honey-
farm operator with 221 honeypots deployed in 55 countries in 64
networks that became operational at the end of November 2021
using IPv4 addresses that had not been used as honeyfarms or dark-
nets before. We investigate data collected by these honeypots over
15-months period, shed light on different views of honeypots, and
report on the types of threats that are visible to honeypots, individu-
ally, as well as the honeyfarm, collectively. Since the used honeypot
software is a medium interaction honeypot we can distinguish scan,
scouting, and intrusion behavior. This gives us a unique view of
the unsolicited and unwanted activities happening on the Internet.
Our contributions can be summarized as follows:

• We analyze more than 400 million sessions from November 2021
to March 2023, collected at 221 honeypots in the studied honey-
farm. We characterize the sessions as no credential, failed login,
no command execution, command execution, and command exe-
cution with file download.

• We study the characteristics of around 2.1 million honeypot client
IPs frommore than 17.7 thousand networks worldwide.We notice
that more than 40% of these IPs participate in more than one type
of activity (e.g., port scans vs. executing commands), and 20% of
all activity in our dataset is observed for more than a week.
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• We report that around half of the client IPs are located in a differ-
ent geographical region than the targeted honeypot. However,
25% of client IPs that connect and execute commands or down-
load malicious code are in close proximity to the honeypots.

• We analyze more than 64 thousand unique hashes of files gen-
erated by clients on the honeypots. We find striking differences
in the number of IPs associated with each hash: from tens of
thousands to only a handful of IPs. We conclude that some high-
profile attacks can be mitigated by blocking a handful of IPs,
while others are more difficult to mitigate.

• Some of the popular hashes are visible for a year or more. How-
ever, the dominance of hashes varies over time. On average more
than 500 unique hashes are visible per day, with the number of
first-seen hashes varying between 2% and 60% of all daily hashes.

• Our study shows striking differences between honeypots regard-
ing the number of sessions, IPs, hashes of files generated by
commands, and first-seen hashes in the honeypot. Around 20%
of the honeypots observe 5× to 30×more unique file hashes than
the rest of the honeypots. Yet, even the honeypots with the high-
est number of observed hashes contribute less than 10% of the
overall hashes in the honeyfarm.

• We also report that honeypots that observe the highest number
of sessions or client IPs are not the ones that collect the highest
number of files hashes generated by intruders generating or
modifying files. However, the honeypots that collect the highest
number of file hashes are typically the ones that observe the
hashes earlier than the rest in our honeyfarm.

2 BACKGROUND
This section provides background information on honeypots, dif-
ferent types of honeypots, and honeyfarms.

In general, a honeypot mimics a real system to attract, log, and
inspect potentially malicious activities. To facilitate access to attack-
ers, honeypots enable logins without any or with easily guessable
credentials. After a successful login, a honeypot tries to imitate
a real system, e.g., by providing shell access, allowing to execute
commands, or enabling downloads from remote servers. At the
same time, the honeypot system logs all activity to be then able to
analyze the behavior of potential malware.

Honeypots can be classified into different types using a variety
of metrics. One commonly used metric to distinguish honeypots
is the possible interactions that they provide. This allows us to
classify them into low-interaction, medium-interaction, and high-
interaction honeypots [29]. Low-interaction honeypots such as
Honeyd [39] or Nepenthes [2] simulate only a very restrictive set
of system behaviors. High-interaction honeypots such as The Hon-
eynet Project [49], on the other hand, try to imitate a much broader
set of services and interactions, providing also access to real-world
operating systems without simulation. Medium-interaction honey-
pots such asHoneytrap [13] or Cowrie [9] can be seen as somewhere
in between these two extremes, i.e., they are more sophisticated
than low-interaction honeypots but less sophisticated than high-
interaction honeypots.

Honeypots can also be run as a fleet to detect potentially mali-
cious behavior more easily. When running more than one honeypot
within the same network, this is referred to as a honeynet. Similarly,

when multiple honeypots are deployed in different networks, this
is referred to as a honeyfarm.

In our study, we make use of a newly deployed honeyfarm. The
honeyfarm consists of 221 medium-interaction Cowrie [9] honeypot
instances distributed over 65 networks in 55 countries worldwide.

3 RELATEDWORK
Researchers have deployed honeypots to gain insights into attacks
on various vulnerabilities in applications, devices, or protocols.
These tools are deployed on various scales and network types,
such as in clouds [3, 12], on campuses [3, 6, 14], or in eyeball net-
works [18]. Studies have used vertical honeypots exposing particular
services and protocols, or horizontal honeypots offering multiple ser-
vices and applications [14]. Various studies have also used logs from
real-world operational systems to study unsolicited or malicious
requests [20, 41].
Honeypot Detection: If a honeypot is easily detected as such,
this can negatively affect its effectiveness since adversaries may
avoid honeypots to hide their malicious activities. Multiple studies
have investigated these honeypot detection techniques [33, 52, 53],
and presented techniques to measure the deployment of popular
honeypot systems. In addition, there are also online services [46]
that provide estimates on the probability of an IP being a honeypot.
Studying Attackers:Medium and high interaction SSH honeypots
can capture many potentially useful information (e.g., executed
commands) about adversaries. Hence, recent works apply differ-
ent clustering [45] and natural language processing (NLP) tech-
niques [5] to group attackers’ IPs. In work by Shamsi et al. [45],
they set up honeypots for 5 protocols (including SSH) in 3 regions
of the AWS cloud for a duration of 20 months. While they covered
more protocols, they observed fewer sessions than our honeyfarms,
i.e., 5.5 million for SSH. They applied different clustering algorithms
and identified features to cluster the attacker IPs. The work by Bar-
ron et al. [3] deployed 102 honeypots for 4 months and varied their
characteristics, e.g., location and difficulty to break, to study the
response by attackers.

Another body of work focuses on the initial phase of SSH con-
nections to gain insights into the attacker’s IPs. Ghiëtte et al. [16]
deployed 4,500 honeypots for a month, focusing on fingerprinting
the software stacks and tools used by adversaries to establish the
SSH connection. They identified 49 tools used for SSH compromis-
ing attempts.

Wu et al. [56] deployed a honeypot on a /16 IPv4 prefix and
reported their analysis of data spanning 1,000 days. However, due
to the massive number of IP addresses within that prefix, i.e., 65k,
their deployment is a lightweight low-interaction honeypot that
does not record the executed commands [6]. Hence, their analysis
includes only those attributes of the attacker that are observable
upon connection, for example, SSH clients and IP addresses. Our
Cowrie-based system is a medium-interaction honeypot deployed
in 55 countries. This allows us to observe localized attacks as well
as the commands and files generated during an attack session.
Amplification Attacks: Amplification DDoS attacks are one of
the popular areas where researchers used honeypots for their stud-
ies [34]. Since amplification attacks mostly make use of IP address
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spoofing, they are limited to UDP-based protocols such as NTP,
CharGen, and DNS [19, 25–27, 50].
IoT Honeypots: In response to the increasing number of IoT de-
vices, researchers have also deployed honeypots that simulate vul-
nerable IoT devices to study attacks on the IoT ecosystem. For ex-
ample, Griffoen et al. [18] deployed 7,500 specialized Telnet-based
IoT honeypots across eight networks for three weeks, primarily
focusing on Mirai botnets [1] and their underlying infrastructure.
Another study by Dang et al. [12] deployed 108 honeypots across
multiple cloud providers and two ISPs to study fileless attacks (at-
tacks that do not require downloading malware) on Linux-based IoT
devices, categorizing the attacks based on the executed commands.
Companies Operating Honeypots: Maintaining and operating a
large global fleet of honeypots across different types of networks
for extended periods of time can become prohibitively expensive for
individual research groups. Therefore, we observe cyber-security-
focused companies [40], non-profit organizations [37], or their
alliances operate such deployments and occasionally share their
insights via threat intelligence tools [23], dashboards [23, 48] or
white papers. To the best of our knowledge, our study is the first
research work that takes an in-depth look into unsolicited SSH and
Telnet connection attempts by leveraging a globally distributed
honeyfarm across 15 months that is available to researchers.
Network Telescopes: These network infrastructures monitor traf-
fic reaching Internet address space that is not assigned to hosts but
is advertised to the global routing system [32]. Although network
telescopes can provide insights about scanners [10], attacks [30, 31],
and other Internet phenomena and characteristics [4, 11, 55], they
are typically passive. Thus, no connections are established or moni-
tored. In recent years, reactive network telescopes have been pro-
posed to address this issue. In the work of Hiesgen et al. [21],
a reactive network telescope “Spoki” responds to asynchronous
TCP SYN packets and engages in TCP handshakes initiated in the
second phase of two-phase scans. With the collected data, they
investigated Mirai attacks based on the SYN packet and malicious
behavior based on the payload of the initial TCP packet. However,
honeypots can report the intruder’s full activity and thus are more
powerful in detecting malware, unauthorized access, and command
execution. Large networks or content providers also operate net-
work telescopes. Richter et al. [41, 42] have a deep look into the
scanning activity on the Internet. Using the logs of a large content
delivery network (CDN) they show that about 87% of the incoming
connection are scanners.

4 HONEYFARM DATASET
Our work relies on data from an operational honeyfarm that we
obtain by establishing a collaboration with Global Cyber Alliance
(GCA) [17], a large honeyfarm operator. The data is processed
and analyzed in situ, using the provided interface. We anonymize
sensitive data to comply with the requirements set forth by the
collaboration. One of their projects involves building and operating
an SSH/Telnet honeyfarm. In this paper, we leverage 15 months
of data from their honeyfarm, which has been operational since
November 2021 to March 2023.

The goal of deploying honeypots in this honeyfarm is to have
them geographically distributed across different countries as well

Honeypot distribution

Figure 1: Presence of 221 honeypots in 55 countries.

0 25 50 75 100 125 150 175 200
Honeypot

0

# 
se

ss
io

ns

2M

4M

6M

8M

10M

Figure 2: Honeypot activity: Number of sessions per honey-
pot (sorted by # of sessions).

as in different networks, with a focus on residential networks. The
honeyfarm consists of 221 identically configured honeypots in 55
countries and 65 Autonomous Systems (ASes). Each honeypot is re-
alized using a customized version of the Cowrie Honeypot suite [9],
a medium interaction SSH and Telnet honeypot that is designed to
log possible brute force attacks as well as shell interactions that a
possible intruder executes. The selection of the Cowrie honeypot
software is driven by its ease of use and because it covers a relevant
attack vector for IoT devices: SSH and Telnet. In Figure 1, we show
a visualization of the 55 countries where the 221 honeypots are
deployed. While most countries host a single honeypot, some, e.g.,
the US and Singapore, host multiple ones.

During our observation period from December 1, 2021, until
March 31, 2023 all 221 honeypots are active. Within this time frame,
each honeypot reports summaries for each SSH or Telnet session.
Each successful TCP connection handshake by a client on either
the SSH port 22 or the Telnet port 23 creates a new session in the
honeyfarm database. A session is ended either by a TCP connection
tear down from the client or a timeout by the honeypot, which
is configured to be three minutes. For each session, the honeypot
records basic session information, which includes the start time,
the end time (including timeout), the IP and port of the honeypot
as well as the client. In addition, if SSH is used, it records the client
SSH version from the SSH handshake if available.

Moreover, the honeypot records the interactions of the client
with the honeypot, namely, used credentials for login and executed
commands. For each login attempt, it records the credentials used
as strings and whether the used credentials are accepted The hon-
eypots are configured to allow password-based SSH authentication
using the username root and by supplying any password except
“root”. Public-key-based SSH authentication is not supported. For
Telnet, the same authentication rules as for SSH are in place. After a
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Figure 3: Honeyfarm activity across time for top 5% of hon-
eypots with the most sessions: median, IQR, and 5th/95th
percentile ranges.
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Figure 4: Honeyfarm activity across time for honeypots,
showing median, IQR, and 5th/95th percentile ranges for
the number of sessions per honeypot.

successful login, the client has access to a Unix-like shell that emu-
lates common Unix commands. As such, the honeypot records each
command executed by the client in a list of “known” or “unknown”
commands. Known commands are emulated by the honeypot; un-
known ones are simply recorded. If a command includes a URI
(this includes anything retrieved from a remote target, including
retrievals via FTP, HTTP, SCP, etc.), the URI is recorded as well. If
a command results in a creation or modification of a file, a hash of
the file content is recorded.

Overall, a total number of more than 402 million sessions are
recorded throughout the measurement period. A majority of 75.84%
of these sessions use SSH, while 24.16% use Telnet to connect. The
median daily number of sessions across all honeypots is roughly
1.6 million. We note that the daily activity differs greatly across
honeypots, see Figure 2, which shows the number of sessions per
honeypot sorted by activity. We find that the top 10 honeypots see
14% of all sessions. Moreover, we observe a knee in the distribution
around 11, after which the difference in activity for the remaining
honeypots is drastically smaller. Indeed, even the least targeted
honeypot still sees more than 360,000 sessions. The 10 most popular
honeypots are located in 10 different countries in 7 different ASes.
As such, their popularity does not appear to be linked to a specific
network or geographical location. Furthermore, it is also not an
artifact of a specific time interval, as we see next.

Indeed, the minimum/maximum daily activity of a single honey-
pot involves 94/1,634,886 sessions. Note that the observed activities
change across time according to the activity of scanners and pos-
sible attackers. Given the large differences in popularity for the
top 5% of honeypots and the remaining ones, we show the median

number of daily sessions over time in Figure 3 (black line) as well
as the interquartile range (IQR, 25% – 75%, blue line) together with
the 5th and 95th percentile range (5% – 95%, light green line) for
the top 5% of honeypots only. Figure 4 shows the same analysis for
all the honeypots.

We clearly see activity spikes, e.g., on September 5, 2022, when
some honeypots see a substantial increase in activity, see Figure 3.
Other spikes are visible in May 2022. Still, we see that the median
typically follows the 75% and 95% line, as shown in Figure 4. The
25% and the 5% lines are often smoother and do not show as many
spikes, with the exception of the 25% line for spring 2022, where it
follows the spikes.

To summarize: First, not all honeypots get the same attention
from scanners and attackers in terms of the number of sessions.
We see that the most targeted honeypot sees more than 30× the
number of sessions than the least targeted one. Moreover, the top
10 honeypots account for 14% of all sessions in the dataset. Finally,
the daily activity can go above 1.5M sessions per honeypot.

5 ETHICAL CONSIDERATIONS
The honeypot data is processed and analyzed in situ at the collec-
tor of the honeyfarm using the provided interface by the major
non-profit honeyfarm operator (GCA), with which we have estab-
lished a research collaboration. No data has been moved outside
the premises of the honeyfarm operator.

Sensitive data regarding the honeypots hosting information (as
well as our collaborator) is anonymized to avoid collateral damage
to all the parties involved. Indeed, providing detailed information
about the hosting networks where honeypots are deployed or the
exact number of honeypots per country may be utilized to discover
the honeypots of the honeyfarm.We do not divulge any information
about the configuration of the honeypots (we only report that they
all run the very popular Cowrie honeypot software) to prevent
malicious actors from detecting or abusing the honeypots.

We anonymize sensitive data information that may be included
in files and commands to comply with the requirements set forth
by the collaboration. In this study, we do not “name and blame”
network operators that host clients participating in the sessions.
However, we disclose the information required to improve our
cybersecurity understanding, namely the number of IPs and hashes
associated with anonymized ASes and each network type.

6 HONEYPOT SESSION CATEGORIES
From our data, we can identify different classes of client honeypot
interactions. Namely, we use the following subcategories for our
sessions, see Figure 5:
NO_CRED: This category includes all sessions where the client
never attempts to log in. Accordingly, the honeypot never sees any
credentials. Such sessions can, e.g., be the result of “scans” for open
ports without a “login attempt”.
FAIL_LOG: Sessions in this category contain login attempts which
do not succeed. The honeypot only allows login via username and
password and not via keys (see Section 4). Hereby, the username
must be “root”, and the password must be any string except “root”.
The motivation for this password policy is to check for “root login”
attempts rather than “regular user login” attempts.
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Figure 5: Flow diagram: Session classification.

Protocol NO_CRED FAIL_LOG NO_CMD CMD CMD+URI Total

SSH and 27.7% 42% 11.6% 18% 0.7% 100%
Telnet

SSH 21.82% 99.24% 98.30% 93.69% 62.45% 75.83%
Telnet 78.18% 0.76% 1.70% 6.31% 37.55% 24.17%

Table 1: Percentage of total sessions per category (top row),
and per protocol (SSH/Telnet only) percentage of sessions in
each category (second and third column).

NO_CMD: This category includes sessions with a successful login
that never executed any follow-up commands. Note, that there
might have been unsuccessful login attempts prior to the successful
one within the same session.
CMD: Sessions in this category have a successful login and execute
commands (known or unknown ones). However, they do not access
any external resources via a URI.
CMD+URI: These sessions have a successful login and executed
commands by the client. In addition, the client tries to explicitly
access an external resource via a URI.

Based on these categories we define the following different client
behaviors:
Scanning: The sessions in the NO_CRED category can best be
described as scanning behavior, as no credentials are being sent.
Scouting: The sessions in the FAIL_LOG category can be charac-
terized as scouting behavior, since the clients tried to log in using
some credentials.
Intrusion: The sessions in the NO_CMD, CMD, and CMD+URI
categories can be described as intrusion behavior, since the clients
were able to get access to a shell, with some even executing com-
mands.

Table 1 summarizes the results of the session classification. The
top row contains the results for all sessions. The bottom ones are the
fractions for SSH and Telnet, respectively. Note that SSH accounts
for more than three-quarters of all sessions (see the last column).
Overall, more than a quarter of all sessions only check if the ports
are openwithout attempting to log in. This category is dominated by
Telnet accounting for more than three fourths. Failed login attempts
account for 42% of all sessions. This is fully dominated by SSH with
more than 99%. In 11.6% of all sessions, the clients successfully log
in, but do not execute any commands—again dominated by SSH.
In more than 18.5% of all sessions, the client executes commands,
and in more than 0.7%, the client accesses external resources. Here,
SSH accounts for more than 60% of all these sessions.

For those sessions involving commands, we note that about one
third create or modify files, and 0.5% create or modify multiple files
(at least two). The remaining ones do not involve file system access.
Table 2 lists the ten most popular successful passwords. Some of
them are predictable and are to be expected (e.g., “admin”, “1234”, or
“passw0rd”), while others are very specific. This may indicate that

Password

admin 1234
3245gs5662d34 dreambox

vertex25ektks123 12345
h3c 1qaz2wsx3edc

passw0rd GM8182
Table 2: Top 10 most used successful passwords (row-major
order).
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Figure 6: Honeyfarm activity: Across time (black line, right
axis) and by category (in percentages, left axis).
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Figure 7: ECDF of honeyfarm session duration by category.

these specific passwords might be part of a larger attack campaign,
or have access to a leaked password database. Among the most
often used usernames we see the strings “nproc”, “admin”, and
“user”. However, as they are not root, the login is unsuccessful in
these cases.

Next, in Figure 6, we show how the fraction of the sessions in
each category changes over time using a stacked area plot (left y-
axis). In addition, the figure shows the total activity in the number
of sessions as a black line (right y-axis). We note that over time the
fraction of sessions in the NO_CRED category increases, indicating
that the fraction of scanning activity increases. Additionally, at the
beginning and end of our observation period, the fraction of sessions
with successful logins that never execute any commands (NO_CMD)
makes up more than 20%. Upon closer inspection, we find that it is a
single prefix that originates most of these sessions, which is mainly
active during these time periods. According to RIPEstat [43], this
prefix is originated by a Russian datacenter. The fraction of sessions
with commands is relatively constant throughout our observation
period. It only decreases during the spikes in Spring 2022, December
2023, as well as the large spike on September 5, 2022, when the
overall activity is dominated by sessions with failed logins. We also
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(b) FAIL_LOG
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Figure 8: Honeypots activity by category across time: Show-
ing median, IQR, and 5th/95th percentile ranges for the num-
ber of sessions per honeypot.

see that the sessions with URIs occur in bursts, most likely related
to specific types of attacks.

In Figure 7 we show the empirical cumulative distribution func-
tion (ECDF) of the session durations by category. In addition, the
plot highlights two timeout values: the one for no login (dashed
gray line) and the successful login (dashed black line). Overall, we
see that the session durations increase with increasing interactions

between the client and the honeypot. We confirm that the honey-
pots terminate many sessions due to timeouts. This is, in particular,
the case for more than 90% of all sessions that log in successfully
but never execute any command (NO_CMD). Interestingly, most
sessions which never attempted to log in (NO_CRED) or with failed
login (FAIL_LOG) are terminated after 3 unsuccessful tries (0.3%
of all SSH session by the honeypot) or by the client. In addition,
we note that a substantial number of sessions with commands
(CMD) trigger the login timeout and that some sessions with URIs
(CMD+URI) cross the timeout—they last longer than three minutes.
This is due to the reset of the timeout period while waiting for the
external resource.

So far, we looked at the overall activity of the honeyfarm. Next,
we show how the number of sessions in each category varies by
honeypot across time in Figure 8. Therefore, we reuse our earlier
visualization for all sessions, recall Figure 3 and 4, but this time we
have separate plots for each of the categories.

We show the activity for the top 5% honeypots (sorted by ses-
sion activity). in Figure 9. We notice that for both NO_CRED and
FAIL_LOG, three of the honeypots observed a significant amount of
sessions on September 9, 2022. Further investigation did not show
any difference between the sessions received by these honeypots
and the rest. In the case of CMD and CMD+URI, we see that only
a single or two honeypots are reporting spikes during the entire
period of our study. In Figure 9(c) we notice that the top 5% of the
honeypots observe a similar activity. An intense activity from the
start of our study period (December 2021) until July 2022, followed
by a drop and another rise in the first three months of 2023.

Overall, we see that the activity in each category differs; this is
underlined also by the fact that the y-axis scale differs. The most ob-
vious observations are (a) that NO_CRED has a substantial baseline
activity for all honeypots at all times, indicating that scanning does
not stop; (b) that FAIL_LOG has a similar shape to the overall one,
which relates to the point that it contributes a substantial share of
sessions; (c) spikes are often due to activity seen by only a small
subset of the honeypots, e.g., the spike on November 5, 2022, in
FAIL_LOG; for CMD there is a large variation with little baseline
activities across all honeypots except during the spring of 2022;
(d) there is a large variation in terms of targeted honeypots for
NO_CMD sessions, and there are almost no spikes visible in the
other categories; and (e) both sessions in the CMD as well as the
CMD+URI category are quite spiky, indicating that there are time
periods with substantial activity. We also note that towards the end
of 2022, a subset of the honeypots are scanned more often, i.e., the
variance increases for NO_CRED sessions.

To summarize: By splitting the honeypot sessions into different
categories, we notice the first characteristic behaviors. We observe
that the NO_CMD sessions tend to be terminated by timeouts while
most of the FAIL_LOG and NO_CRED sessions are closed before
the one minute mark. Another observation is that the NO_CRED
category is more stable over time, while the rest of the categories
tend to have multiple spikes across our observation period. The first
hints at honeypots keep being scanned at a constant rate, while the
latter suggests that the scouting and more specifically, the intrusion
categories are more volatile over time. These bursts of activities
might be linked to different attack campaigns.
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Figure 9: Honeypots activity by category across time for the
top 5% honeypots: Showing median, IQR, and 5th/95th per-
centile ranges for the number of sessions per honeypot.

7 HONEYPOT CLIENTS
Next, we turn our attention to the characteristics of the clients that
establish connections to the honeyfarm.

7.1 Client IPs per country
Overall, the monitored honeypot sessions involve more than 2.1
million unique IPv4 addresses from more than 17.7k ASes during

200K

400K

600K

(a) All sessions (log scale).

25K

50K

75K

100K

125K

(b) Sessions with commands (CMD + CMD+URI) (log scale).

Figure 10: Honeypot client IPs per country.
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Figure 11: Number of unique IPs per session type.

the 15 months observation period. Note, these IPs are unlikely to be
spoofed as all sessions involve a successful TCP handshake. To de-
termine the physical location of the clients, we use the commercial
API of Maxmind [28] to map the IPs to countries. Figure 10(a) shows
the distribution of the clients on the world map using a logarithmic
scale. Overall a large fraction of the honeyfarm client IPs originate
from China (31%), India (9%), the US (8%), Russia (5%), Brazil (5%),
Taiwan (5%), Mexico (3%), and Iran (3%).

7.2 Client IPs Over Time
Then, we study how the daily population of client IPs changes
over time. Figure 11 shows the number of unique IPv4 addresses
observed per day for each category for the duration of our study.
The first surprise is the substantial increase in the scanning activity
(NO_CRED) after about two months. It seems that it takes scanners
some time to discover the honeypots and include them in “regular”
scans. Indeed, at the same time, the command execution is also
much more prominent (see CMD line). Overall, we notice that the
number of client IPs varies substantially per category. The number
of client IPs with NO_CRED sessions is higher than those with
FAIL_LOG and CMD sessions. The number of client IPs involved in
NO_CMD is small, except during the last five months of our study.
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The number of client IPs with CMD+URI is very low for most of
our study period.

There is also a substantial variation in the number of client IPs
per category. For example, the number of unique IPs for NO_CRED
varies between 10k and 25k during the 15 months of our study. We
also notice that the number of unique IPs for FAIL_LOG and CMD
are of the same order of magnitude, around 10k IPs between the
beginning of 2021 and the beginning of 2023. However, there is a
noticeable change at the end of 2021 from around 3k to 10k and a
substantial increase for FAIL_LOG in 2023 from 10k to more than
12k. The daily number of client addresses that are categorized as
NO_CMD is relatively low, around 1k IPs, for most of of our study
period. However, there is a noticeable increase after December 2022
reaching the levels of CMD at the level of 10k IPs. The number of
client IPs that are categorized as CMD+URI sessions is overall small,
with a noticeable spike in June 2022 with more than 2,500 IPs.

We note that the number of daily unique IPs is small compared
to the number of IPs observed during the full period of our study.
This implies that, typically, the same set IPs do not contact the
honeyfarm continuously. This indicates that a large number of client
IPs can be utilized for scouting as well as other more suspicious
interactions, and with low frequency. This makes these IPs more
difficult to be detected as potential malicious ones when the window
of observation is small.

7.3 Client IPs across countries by category
Next, we revisit the geographic distribution of the clients but this
time per category. Overall, we observe similar distributions but
with some variations. Figure 10(b) shows the distribution of IPs on
the world map for CMD + CMD+URI. For comparison, we show
the maps for all categories in the Appendix A. NO_CRED sessions
involve 1.7 million unique IPv4 addresses in 14 thousand ASes dur-
ing our study period. Again, the largest fraction of them originates
from the US, China, Taiwan, Russia, and Iran. A large fraction of
client IPs are attributed to FAIL_LOG sessions, see Figure 23(b) in
the Appendix, are hosted in Asia. Although the US is still the most
popular origin, China, Japan, Vietnam, Singapore, and India are
at the top of the list. Moreover, the set of these IPs is relatively
smaller compared to NO_CRED. We observe 420 thousand unique
IPv4 addresses in 11.7 thousand ASes. The number of client IPs that
are classified as CMD are similar to those classified as FAIL_LOG.
Indeed, we observe 450 thousand unique IPv4 addresses in 10.6
thousand ASes, see Figure 10(b).

Around 222 thousand of these IPs also establish FAIL_LOG ses-
sions with honeypots in the honeyfarm. This is to be expected as
compromised hosts are used to establish connections with different
credentials. At the top of the list of countries that host IPs that es-
tablish CMD sessions are the US, China, Japan, India, and Brazil, see
Figure 10(b). The number of IPs involved in the NO_CMD session is
smaller compared to CMD. Indeed, we observe only 160 thousand
IPs in 8.5 thousand ASes. This can be attributed to the fact that the
majority of client IPs that successfully login to any of the honey-
pots in the honeyfarm execute commands. At the top of the list
are Russia, Germany, the US, Vietnam, and Sweden. Finally, only a
small number of client IPs are involved in CMD+URI sessions, as
such sessions are only a very small fraction of all sessions (around
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Figure 12: ECDF of number of honeypots contacted per client
by category (log scale).

0.18%). The clients in this category are 16 thousand IPv4 addresses
in 1.3 thousand ASes. Among the top countries that host these
client IPs are the US, Netherlands, France, Bulgaria, and Romania,
see Figure 23(e) in the Appendix. The main take-away is that as the
interactions become more involved, the top countries hosting the
clients changes.

7.4 SSH vs. Telnet Activity
Next, we look at differences per protocol. Overall, recall that SSH is
much more common than Telnet. However, for NO_CRED we ob-
serve 78% Telnet and only 22% SSH sessions. This is also true when
looking at the country granularity. However, some countries differ.
For example, for Vietnam, Brazil, and Lithuania, SSH dominates.
For other countries, e.g., Italy and Canada, SSH contributes less
than 10%. NO_CMD is clearly dominated by SSH except for some
special cases, e.g., Switzerland and Bulgaria. Manual cross-checks
show that these are due to one spike in activity.

7.5 Client IPs vs. Honeypots
Given our earlier observation regarding the reuse of client IPs, we
now investigate the relationship between client IPs and honeypots
more closely. In Figure 12 we show an ECDF of the number of
honeypots within our honeyfarm that are contacted by each client
IP. We acknowledge that dynamic IP address assignment may skew
the distribution towards lower numbers.

Overall, we see that more than 40% of all client IPs only contact
a single honeypot. Yet, 18% contact more than 10, and 2% contact
more than half of the honeypots (> 110). Surprisingly, clients that
interact more with the honeypots are likely to contact more of
them. The largest exception, though, is the FAIL_LOG category.
One possible explanation is that FAIL_LOG sessions can indicate
a reconnaissance behavior of an intruder in order to detect more
potentially vulnerable hosts.

Next, we ask how long client IPs are interacting with our hon-
eyfarm. Figure 13 shows an ECDF of the number of days that a
client IP contacts any of the honeypots in our honeyfarm. Note,
that most client IPs are only visible for a single day. Yet, more than
100 client IPs are active almost every day (> 90%) during our study
period. We again see that FAIL_LOG sessions are most prominent.
On the other hand, IPs that involve CMD+URI are seen for the
lowest number of days. Indeed, these are mainly consecutive days.
This hints at the possibility that potential attackers are trying out
different strategies.
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Figure 13: ECDF of number of days that a client IP is observed
by category (log scale).
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Figure 14: Number of clients per honeypot per category.
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So far, we have taken the viewpoint of a client IP. Now we are
switching to the the viewpoint of honeypots and ask how many
different clients are contacting each one of the honeypots within
our honeyfarm. Figure 14 shows the number of unique client IPs
per honeypot sorted by the number of clients. We see that a few
honeypots (the top 10 ones) are contacted by many more clients
than others. Surprisingly, these are not the same as the ones that
see the largest number of sessions, recall Figure 2. For comparison,
we add the number of sessions to Figure 14 using the right y-axis
using log scale.

We also include the number of client IPs per category within the
figure. Note, that these do not add up, as some clients have sessions
in multiple categories. Overall, the number of clients involved in
scanning is more than twice as many as those involved in more
advanced honeypot interactions. The curves for clients with ses-
sions in FAIL_LOG and CMD sessions follow each other closely,
whereby the one for FAIL_LOG is just slightly larger. Sessions with
NO_CMD and CMD+URI are initiated from just a small fraction of
the clients.

To underline that some IPs are indeed active in multiple cat-
egories, we check how many client IPs are involved in sessions
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Figure 16: Regional diversity: client vs. honeypot across time
(left y-axis) and number of clients (right y-axis).

from multiple categories on the same day in Figure 15. We pick
three of our categories. We investigate NO_CRED as this indicates
scanning, FAIL_LOG as this may be the first step of interaction
with the honeypot, and CMD as this involves substantial interac-
tions with the honeypot. We find that more than 700k IPs are only
involved in scanning (NO_CRED). We notice that scanning is often
combined with login attempts as well as command execution, e.g.,
in Spring 2022. Scanning combined with commands rarely occurs
on the same day. However, failed logins together with commands
are very common but hardly occur on the same day as failed login
only. Commands only complement those that also do failed login,
e.g., in Summer 2022.

7.6 Regional Diversity
Next, we take advantage of the geographic diversity of the hon-
eyfarm. This allows us to check if the client and the contacted
honeypot are in the same country, on the same continent, or in
completely different geographic regions. In Figure 16(a), we show
the regional diversity of client/honeypot interactions across time
as a fraction of clients. In addition, the plot also shows the number
of clients observed per day. Overall, we see that most clients con-
tact honeypots that are not on the same continent. This makes up
more than 50% of all interactions every single day. The next most
common class involves clients that contact a honeypot on the same
continent and on another continent. This indicates that locality
is not the primary motivation when clients choose address space
for scanning or testing for vulnerabilities. The fraction of clients
whose interactions stay within a single country is tiny. Even if we
include clients that interact within the country as well as outside,
the fraction still remains small. One caveat is that the honeyfarm
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has no deployment in China, yet a substantial share of clients (31%)
is geolocated in China.

When further digging into the data by looking at the different
categories, we note similar behavior for NO_CRED, FAIL_LOG,
NO_CMD, as well as CMD, see plots Figure 24 in the Appendix.
However, those sessions that involve URIs show more geographic
proximity, see Figure16(b). Here, the fraction of sessions out of the
continent is substantially smaller, while the fraction in and out of
the continent is substantially larger. This indicates that geographic
locality may matter more when clients start picking targets for
specific tasks.

To summarize: First, the number of unique client IPs increases
over time. This can be explained by the fact that it takes a while until
the honeypot IPs become well-known. Second, more than half of
client IPs contact multiple honeypots. Also, we notice a substantial
number of IPs involved in more than one type of session. This sort
of behavior makes the differentiation between a “malicious” and a
“harmless” actor much more difficult. Third, more than 50% of client
IPs are seen active only for one day. In CMD+URI sessions, this
value increases to almost 70%. This result shows that IP blocking
might not be a good option, yet we will later show that this is
not always the case. Finally, intrusion sessions, specifically the
CMD+URI sessions, tend to originate closer to the honeypot. This
could be linked to the “malicious actor” choosing a closer location
to the target from where to initiate the attack.

8 COMMANDS
In this section, we look closely at the commands and associated
file hashes resulting from a client’s interaction with any of our
honeypots. This involves roughly 19% of all sessions.

8.1 Common Commands
To understand common commands executed by honeypot clients,
we take the recorded command strings, split them at command sep-
arators (“;” and “|”), and look at the most popular ones, see Table 3.
Among them, we find many typical Unix commands that give in-
formation about the system, such as free, uname, w for whois, etc.,
or access to files with such information, e.g., cat /proc/cpuinfo.
Another class of popular commands relates to script execution such
as awk or shell, or remote file access such as wget or tftp. Other
commands relate to SSH and its handling of public keys, e.g., mkdir
.ssh. Indeed, we also find the entry of a trojan horse SSH public
key via echo into the SSH authorized_keys file among the most
popular commands. Changing rights, e.g., chmod 777, can also be
seen among popular commands. Another set of commands relates
to changes of credentials, e.g., chpasswd. These observations are
similar to those seen, e.g., by Koniaris et al. [24] and Dang et al. [12].

Overall, there is a lot of diversity in these commands with extra
spaces, quotes, etc., which makes an overall classification challeng-
ing. Still, it is clear that typical Unix commands related to infor-
mation gathering, script execution, file transfer, and credentials
are among the most popular ones. In addition, about one-third of
the commands involve creating or modifying a file for which the
honeypot records a hash of the file content. These hashes can then
be used to identify files with the same content across honeypot
sessions. In effect, the hashes are signatures of the client honeypot

Commands

grep name awk cat /proc/cpuinfo
free -m crontab -l w (whois)
uname -a bash chpasswd
mkdir .ssh rm -rf .ssh chmod -R go= /.ssh
top echo "ssh-rsa AAA..."».ssh/authorized_keys
shell cat /proc/mounts wget
tftp history -c chmod 777 bins.sh

Table 3: Top 20 commands (row-major order).

Hash # Sessions ↓ # Unique # Days Tag # HoneypotsClient IPs

H1 25,688,228 118,924 484 trojan 221
H2 153,672 3 252 malicious 202
H3 110,280 12,698 119 trojan 150
H4 105,102 1,288 20 mirai 203
H5 96,523 1,027 451 mirai 221
H6 87,610 3 33 malicious 74
H7 64,762 1 3 unknown 180
H8 58,662 165 4 mirai 214
H9 57,726 43 220 trojan 173
H10 54,464 488 6 mirai 209
H11 54,262 354 65 trojan 221
H12 52,312 129 6 malicious 215
H13 47,240 1 31 miner 212
H14 40,274 29 9 malicious 210
H15 40,031 4 18 mirai 184
H16 39,688 200 12 miner 208
H17 36,049 3 8 mirai 183
H18 33,569 3 12 unknown 30
H19 33,400 2 4 unknown 184
H20 32,785 105 3 malicious 215

Table 4: Top 20 hashes sorted by the number of sessions.

interactions and, as such, can be used to identify specific attack
campaigns. Almost all sessions only involve a single file. Only 0.5%
of all the sessions involve two, e.g., when they create one and then,
later on, change it. A few sessions, namely 282, involve more than
10 file operations, generating more than 10 hashes.

8.2 Popular Hashes and Attack Campaigns
During the 15 months of our study, we observe 64,004 unique file
hashes created by honeypot clients. To understand which files may
correspond to known malware, we cross-check all hashes in the
VirusTotal malware database [54]. Of the more than 64k hashes, we
find information for only less than one thousand hashes. Of these,
most are labeled as malicious or are associated with specific attack
threats, e.g., Mirai, or attack families, e.g., Trojan.

Given this low coverage, we use additional databases for manual
cross-checks for the most popular hashes, namely ClamAV [8],
FileScan.IO [15], InQuest [22], CERT.PL MWDB [7], and YOROI
YOMI [57]. Table 4 summarizes the results. Among the 20 most
popular hashes—by number of sessions—we find 6 hashes related
to Mirai, 5 malicious ones, 4 trojan ones, 3 unknown ones, and 2
miners (one for Bitcoin and one for Ethereum). We find that the
number of sessions differs substantially. The first trojan is the one
that is also among the top commands, recall Table 3. In terms of
sessions, it dominates all other commands as it is more than 20
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Hash # Sessions # Unique # Days Tag # HoneypotsClient IPs ↓

H1 25,688,228 118,924 484 trojan 221
H3 110,280 12,698 119 trojan 150
H21 16,670 5,897 9 suspicious 205
H22 4,680 2,213 16 unknown 206
H23 1,803 1,310 63 unknown 126
H4 105,102 1,288 20 mirai 203
H24 2,279 1,144 425 mirai 77
H25 2,250 1,126 424 mirai 77
H26 2,187 1,108 423 mirai 77
H27 1,208 1,067 30 malicious 113
H5 96,523 1,027 451 mirai 221
H28 1,485 752 305 mirai 76
H29 1,503 750 312 mirai 76
H30 1,443 736 305 mirai 76
H31 1,191 704 3 suspicious 185
H32 1,213 610 281 mirai 75
H33 29,227 575 456 mirai 221
H10 54,464 488 6 mirai 209
H34 761 448 301 trojan 118
H35 2,809 416 8 unknown 193

Table 5: Top 20 hashes sorted by number of client IPs.

Hash # Sessions # Unique # Days ↓ Tag # HoneypotsClient IPs
H1 25,688,228 118,924 484 trojan 221
H33 29,227 575 456 mirai 221
H5 96,523 1,027 451 mirai 221
H24 2,279 1,144 425 mirai 77
H25 2,250 1,126 424 mirai 77
H26 2,187 1,108 423 mirai 77
H36 6,213 399 325 mirai 220
H29 1,503 750 312 mirai 76
H28 1,485 752 305 mirai 76
H30 1,443 736 305 mirai 76
H34 761 448 301 trojan 118
H32 1,213 610 281 mirai 75
H37 4,875 27 274 mirai 217
H2 153,672 3 252 unknown 202
H9 57,726 43 220 trojan 173
H38 10,834 4 172 trojan 197
H39 981 19 159 mirai 75
H40 7,532 5 151 unknown 4
H41 8,309 4 145 trojan 193
H42 660 13 145 trojan 63

Table 6: Top 20 hashes sorted by the number of active days.

times as popular as the next one. It also involves many unique client
IPs that contact all possible honeypots in our honeyfarm. Moreover,
it is active on all days throughout our observation period.

The next popular hash is a malicious one that has rather different
characteristics. It only involves 3 client IPs, is active for roughly
half of the time period (with some breaks in between), but still
contacts almost all honeypots. Others, e.g., H6 and H7, also involve
fewer than 5 clients but last much shorter or target only a subset
of the honeypots.

Interestingly, there are multiple hashes associated with the Mirai
attack, but they have all different characteristics, e.g., H8 lasts for 4
days, H4 lasts 20 days, H5 lasts almost the whole period. H4 and H5
involve more than 1000 client IPs, yet H8 only 165 client IPs. One
of the miners is only observed from a single client but with a large
number of sessions (for that one client). It is active for a month and
contacts almost all honeypots. The second one is active for only 12
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Figure 17: Unique Hash activity: Across time (black line, left
axis) and fraction of fresh hashes (right axis). We distinguish
between overall fresh hashes—not seen before, and hashes
that are fresh within the last 30 or 7 days.

days but involves 200 clients. Overall, 8 of the top 20 hash involve
less than 5 client IPs as seen by our honeyfarm, while 12 of them
are seen by more than 200 (90%) of the honeypots.

To highlight the diversity, we show the top 20 hashes sorted by
the number of unique client IPs in Table 5 and sorted by the number
of days in Table 6. Interestingly, Mirai-related hashes are dominant
among the long-lasting attacks, and for quite a number of them,
they only contact 75–77 of the honeypots. Further investigation
shows that the sessions with these hashes always use the same
login credentials (“root”:“1234”) and run a similar set of commands.

Among the takeaways of this analysis are that attack vectors
vary largely by the number of sessions, number of unique client
IPs, active days, and number of contacted honeypots. As such, a
honeyfarm needs to have diversity in terms of geographic coverage,
network coverage, etc. This diversity implies that some of the at-
tacks may be easy to block, e.g., if they only involve a small number
of client IPs. Others are more difficult to stop, e.g., if they involve a
large botnet of clients.

8.3 Campaign Timeline and Freshness
Figure 17 shows the number of unique hashes that are collected per
day at the 221 honeypots of the honeyfarm. The number of hashes
varies substantially from a few tens up to three thousand per day.
Note, the spikes that can occur at any point and are not restricted
to the first few months of the honeyfarm operation.

Given that attack campaigns have different durations, we also
analyze if the hashes are fresh, i.e., that they were not observed
before. To not bias the data by our observation period, we define
two additional freshness metrics using a sliding window approach,
namely not observed within the last 7 days and the last 30 days.

We find that a substantial fraction of unique hashes observed
in a day are fresh. In Figure 17, we show the fresh hashes as a
percentage of the unique hashes observed per day with a green
dashed line. This percentage varies substantially from 2% up to 60%.
There is no apparent correlation between the number of unique
hashes and the number of fresh hashes.

When moving to the two additional freshness metrics, we see
that the fraction of fresh hashes is increasing up to 60%. With
less memory, i.a., as we move from all via 30 days to 7 days, the
percentage of fresh hashes increases. Overall, this plot highlights
that “new” attacks or variants of attacks that generate fresh hashes
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Figure 18: Unique (fresh) hashes: Per honeypot (left axis) and
# of client IPs (right axis).
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Figure 19: Unique (fresh) hashes: Per honeypot (left axis) and
# of sessions (right axis).

are hitting the honeyfarm every day. We also see that some attacks
are active for some time, then pause and restart.

8.4 Hashes vs. Honeypots
Figure 18 shows the number of unique hashes recorded by each
honeypot sorted by the number of unique hashes. We again observe
a large variability, i.e., the top 10 honeypots observe many more
hashes than the rest. More concretely, they see a factor of 20 more
hashes than the ones in the tail. However, the top honeypot does not
see more than 5% of all the hashes, and the top 10 see less than 15%
of all hashes. The grey dotted line shows the number of clients for
each honeypot. Figure 19 is a similar figure where the grey dotted
line shows the number of sessions for each honeypot. Interestingly,
however, the honeypots that see the highest number of unique
hashes are not necessarily the honeypots that are contacted by the
largest number of clients (gray line in Figure 18), nor are the ones
with the most sessions (gray line in Figure 19).

Still, when we look at the freshness of the hashes, the top 10 hon-
eypots remain the same, even though the individual ranks change
by a few spots. Thus, they still contribute most of the fresh hashes.
The same holds for the time-limited freshness metrics with a mem-
ory of 7 resp. 30 days. Indeed, the ranking remains almost stable
throughout the whole set of honeypots.

When looking at how many hashes are seen by how many hon-
eypots, we find that more than 60% of all the hashes are observed by
a single honeypot only. However, more than 6.8% are seen at more
than 10 honeypots, and more than 200 are seen by more than half of
the honeypots; among them are many of those presented in Table 4.
We also check the distribution of the hashes among countries and
find a similar long-tail distribution. These numbers indicate that
besides those hashes that are observed everywhere, there is a very
long tail. Given that security incidents often try to hide in the long
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Figure 22: ECDF: length of attack campaigns by attack type.

tail, it is important to have a honeyfarm infrastructure that has
sufficient vantage points and is geographically and topologically
diverse.

8.5 Hashes vs. Clients
On the one hand, we observe hashes that involve many client IPs.
On the other hand, some involve only a single client IP. To better
understand this relationship, in Figure 20 we plot for each hash
(log x-axis) the number of unique client IPs that involve this hash
(log y-axis) sorted by the number of client IPs. We find the typical
effects of a long-tailed distribution. Some hashes involve many
clients, while others only have a few. The ones with many clients
are likely easier to observe but may be harder to block. While the
ones in the tail may be harder to observe but easier to block.

We also plot, in Figure 21, for each client IP (log x-axis) the
number of unique hashes that involve this client (log y-axis) sorted
by the number of hashes. Again we see the effects of the long-tail
distribution. Some hashes/campaigns are driven by a small number
of IPs others involve large sets of IPs. Such large sets of IPs may
point to a sizable botnet.

8.6 Activity of Attack Campaigns
To better understand the activity of each attack campaign, we next
investigate how many days we see a specific hash in any of our
honeypots. Figure 22 shows the corresponding empirical cumulative
distribution function (ECDF). Hereby, we look at all hashes and the
subclasses we derived using VirusTotal. The latter distinguishes
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hashes associated with the Mirai attack, hashes tagged as trojan,
and hashes tagged as malicious. The main takeaway is that (a) most
hashes are only active for a single day, (b) hashes tagged as trojan
tend to be active on more days compared to others, and (c) hashes
tagged as Mirai are typically active for less than 30 days.

9 DISCUSSION
OnMulti-role Client IPs.Our analysis shows that 40% of all client
IPs are involved in more than one type of connections. Thus, these
devices, either compromised or purposefully provisioned as attack
systems, serve different roles, ranging from scanning (checking
for open ports) to scouting (trying login credentials), as well as
intrusion and interaction (logging in and executing commands)
with potentially vulnerable devices on the Internet. This shows
that client IPs that are performing scanning, over time may per-
form security-threatening tasks. We were able to characterize such
behavior as we utilize a highly distributed honeyfarm and collect
connection data over a long period (15 months). Such observations
highlight the value of a distributed honeyfarm and the need to
collect data at honeypots over a long duration.
The Birth of a Honeyfarm. The analysis of our newly launched
honeyfarm deployed on 221 hosts (whose addresses have never
been used as honeypots before) in 55 countries and 64 networks
shows, that from day one to the end of our study (15 months later)
the level of activity remains overall similar. Interestingly, the levels
of scanning and scouting are almost similar to the levels of intrusion
and interaction with the honeypots at the beginning of our study.
It takes more than a month until the level of scouting increases
and more than 6 months for scanning. After a couple of months in
the honeyfarm’s lifetime, scanning and scouting activity combined
surpasses the intrusion category. At the end of the 15 months of
operation of the studied honeyfarm, we did not observe a noticeable
drop in scouting or interaction activity. Thus, we conclude that
most of the attackers did not bother detecting or blacklisting our
honeypot IPs.
Federated Honeyfarms. Our study clearly shows the benefits
of operating a honeyfarm over individual honeypots. However,
even the top honeypots only observe a small fraction of the unique
set of hashes observed in the complete honeyfarm. We believe
that the research and security community should collaborate to
share the data and intelligence collected by honeyfarms operated
and deployed by independent organizations. We expect this will
substantially improve the visibility of activities such as scouting,
intrusion, and interaction but also has the potential to identify such
activity earlier than independent honeyfarms can achieve today.
Honeyfarms and Security Reality. The analysis of the data col-
lected in the honeyfarm also shows that the majority of the hon-
eypots observe high-profile attack campaigns. Many of these cam-
paigns last for weeks, and many of the top 20 campaigns in terms
of activity in our honeyfarms even last for months, with some be-
ing visible throughout the entire duration of our study, i.e., fifteen
months. Often, these campaigns are well orchestrated, and we see
the same attack coming from numerous IPs.

However, this is not always the case. We also observe large cam-
paigns which are active for more that half a year, that originate from
only a handful of IPs. It is frustrating to see that no action is taken to

block IPs participating in such campaigns. Unfortunately, our anal-
ysis shows strong indications that network and cloud providers are
not well informed or do not have the appropriate filters in place to
block client IPs that participate in scouting, intrusion, or interaction
with potentially vulnerable hosts. It is even more concerning that
long-lasting campaigns observed by a substantial fraction of the
honeypot population in our honeyfarm utilize only a handful of IPv4
addresses for their campaign, and still no blocking or take-down of
these IPs takes place for months. Thus, although honeyfarms are
proven to be very effective in detecting attack campaigns, this is
only a part of the chain of network defenses that alone can not be
a panacea.

10 CONCLUSION
By analyzing data from a newly deployed and operational hon-
eyfarm consisting of 221 honeypots deployed in 55 countries and
65 networks for 15 months, we shed light on the unwanted and
unsolicited activity in the Internet. We performed our analysis
per honeypot, i.e., individually, as well as per honeyfarm, i.e., col-
lectively. Our analysis shows striking differences across identical
honeypots operated worldwide.

Hereby, we taxonomized the different connections established
with honeypots to illuminate different scanning, scouting, and in-
trusion behaviors. Depending on the metric, the top honeypots may
receive more than 30× more sessions or sessions from 20× more
client IPs than honeypots in the tail. Note, which honeypots are the
top ones differs substantially by metric. As such, contrary to our
intuition, those with the largest number of hashes do not have the
most sessions or client IPs. However, we reported that the set of
honeypots that observed the highest number of hashes is likely to
observe new hashes earlier. These insights can be used to inform
new installations of honeypots within honeyfarms depending on
the objectives of the honeyfarm, e.g., early detection of new hashes
vs. high visibility of scanning activity. We have also observed that
the intruders generate many different files. However, none of the
honeypots observed more than 5% of all seen unique files. To cap-
ture the tail, which are likely the more interesting intrusions, one
has to have scale and diversity in the honeyfarm deployment.

Our analysis showed that many of the attacks, based on the
hashes involved, are visible for an extended period so that they
could in principle be easily detectable. Nevertheless attacks varied
and new ones appeared on a daily basis. Moreover, some attacks
always targeted the same subset of honeypots with just a few client
IPs, while others used many client IPs likely from major botnets
and contacted almost all honeypots. The former are in principle
easy to take down, the latter are more difficult but they may be
useful to track down botnets. Thus, our study provides insights on
which attack infrastructures are easy to neutralize and which not
within a relatively small observation window.

As part of our ongoing research we continue analyzing the logs
and files of the honeyfarm and plan to investigate changes in the
attack behavior and practices. Finally, we also plan to coordinate
with the honeyfarm operator with the aim to jointly notify networks
participating in connections to the honeyfarm.
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APPENDIX
A HONEYPOT CLIENTS
In this section, we present additional results about the geographical
distribution of honeypot clients per category. Figure 23 provides
an overview of clients distribution per category. Our analysis con-
cludes that there is a similar distribution of the clients in NO_CRED
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and CMD, with the majority of clients originating in China. One
slight difference is noticed in the activity of Russia, Saudi Ara-
bia, and Brazil, with a larger percentage of clients in CMD. The
FAIL_LOG also follows the above distribution with one distinct
difference—clients activity in the US. In Figure 23(d), we notice
the domination of the China and US clients in the CMD category.
Figure 23(e) shows that in the CMD+URI category, the US has the
most clients while a significant amount of countries in Africa do
not have any clients involved.

Figure 24 shows the regional diversity of clients vs. honeypots
by category. In almost all categories, except CMD+URI, we notice
that a significant amount of sessions are established between a
honeypot and a client located on a different continent. In the case of
CMD+URI, as we note in Figure 24(e), we see a significantly higher
number of clients located in the same region as the honeypot.
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Figure 23: Honeypot client IPs that establish sessions per
country (log scale).
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Figure 24: Regional diversity: client vs. honeypot by category.
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