
FlowDNS: Correlating Netflow and DNS Streams at Scale

Aniss Maghsoudlou
aniss@mpi-inf.mpg.de

Max Planck Institute for Informatics
Saarbrücken, Germany

Oliver Gasser
oliver.gasser@mpi-inf.mpg.de

Max Planck Institute for Informatics
Saarbrücken, Germany

Ingmar Poese
ipoese@benocs.com

Benocs GmbH
Berlin, Germany

Anja Feldmann
anja@mpi-inf.mpg.de

Max Planck Institute for Informatics
Saarbrücken, Germany

ABSTRACT

Knowing customer’s interests, e.g. which Video-On-Demand (VoD)
or Social Network services they are using, helps telecommunication
companies with better network planning to enhance the perfor-
mance exactly where the customer’s interests lie, and also offer
the customers relevant commercial packages. However, with the
increasing deployment of CDNs by different services, identification,
and attribution of the traffic on network-layer information alone
becomes a challenge: If multiple services are using the same CDN
provider, they cannot be easily distinguished based on IP prefixes
alone. Therefore, it is crucial to go beyond pure network-layer
information for traffic attribution.

In this work, we leverage real-time DNS responses gathered by
the clients’ default DNS resolvers. Having these DNS responses
and correlating them with network-layer headers, we are able to
translate CDN-hosted domains to the actual services they belong
to. We design a correlation system for this purpose and deploy it at
a large European ISP. With our system, we can correlate an average
of 81.7% of the traffic with the corresponding services, without any
loss on our live data streams. Our correlation results also show
that 0.5% of the daily traffic contains malformatted, spamming, or
phishing domain names. Moreover, ISPs can correlate the results
with their BGP information to find more details about the origin
and destination of the traffic. We plan to publish our correlation
software for other researchers or network operators to use.

ACM Reference Format:

Aniss Maghsoudlou, Oliver Gasser, Ingmar Poese, and Anja Feldmann.
2022. FlowDNS: Correlating Netflow and DNS Streams at Scale. In The

18th International Conference on emerging Networking EXperiments and

Technologies (CoNEXT ’22), December 6ś9, 2022, Roma, Italy. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3555050.3569135

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’22, December 6ś9, 2022, Roma, Italy

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9508-3/22/12. . . $15.00
https://doi.org/10.1145/3555050.3569135

1 INTRODUCTION

ISPs need to know where their traffic is coming from originally
not only to provide their customers with better quality, but also to
better plan their network infrastructure and collaborations.

To this end, most of the service providers gather network-layer
statistics of their traffic using different protocols, e.g. Netflow [7],
IPFIX [2], etc. which usually include source and destination ad-
dresses, and traffic volume.1 Network-layer headers do not contain
the domain name of the services they belong to. To complicate this
even more, Over-The-Top (OTT) services are nowadays adopting
multi-CDN approaches [24], making the inference of the service
merely on the IP address nearly impossible. Therefore, either DNS
records or the application layer information are needed. Nowadays,
the application layer information is oftentimes encrypted [10] and
therefore, not visible to the service providers.

DNS is one of the core services to map domain name to the IP
address [15, 16], and can be used to find the original source of the
service. There have been several studies using machine learning
techniques for domain name recognition, all of which use passive
DNS records [4ś6, 13, 21]. Inspecting the traffic on a large European
ISP, we observe that more than 85% of the traffic is originated
by CDNs. These CDNs might use one domain name for several
services in different locations/times and IP addresses could also
be re-used [22]. Therefore, IP address to domain name mappings
change frequently in CDN-hosted domain names [19, 22], and DNS
records used for such correlation should not be outdated. Thus,
capturing the DNS records collected from user requests is the most
suitable way of mapping domain name to IP address.

Previous studies use software-defined networking to correlate
DNS responses with web traffic either in an external controller [9]
or in the data plane [3, 12]. However, all these approaches introduce
parsing limitations, e.g. domain names length limit, and also ignore
encrypted DNS packets. This work, however, does not enforce
any limitation on the DNS records, and is not affected by DNS
encryption. Unlike the previous studies, we do not aim at direct
policy enforcement and therefore, do not require any modification
to the existing network architecture. We instead propose a system
that can run on any machine receiving a flow of DNS records and
network flows.

Using DNS records from the same source as the traffic gives the
domain name recognition more certainty. In the meanwhile, using

1Throughout this work, we refer to network flow information as Netflow, which is a
standardized protocol to collect IP network traffic [8].



CoNEXT ’22, December 6–9, 2022, Roma, Italy Maghsoudlou, et al.

the same sources of DNS and Netflow translates to a higher pro-
cessing load since both sources need to be processed synchronously
either in a real-time fashion or offline. In case the processing is to
be done offline, the timestamps need to be taken into account and
the two sources of data, namely Netflow and DNS records, need
to be correlated in the window where the DNS record is still valid,
i.e. TTL > 0. Although research has shown that in some scenarios,
longer TTLs can reduce latency [17], our experiments show that
99% of the record have TTLs of less than two hours. Monitoring
TTLs for every single record while correlating induces higher mem-
ory usage and lower correlation rates. Multi-level caching in DNS
resolvers makes this even more complicated [23].

Correlating two live sources of data, each carrying thousands
or millions of records per second, also requiring keeping some of
the records for later use, is not trivial. Doing so with the standard
database queries for an hour of data, takes tens of hours, making
this correlation impossible to be done in real-time. Therefore, we
propose FlowDNS, a system to correlate Network-layer headers
and DNS records in real-time. Our work consists of three main
contributions:

• We design, build, and deploy a system for real-time DNS-Netflow
Correlation called FlowDNS in a large European ISP. In Section 3,
we go over the system’s building blocks, and in Section 4, we
show that we can correlate 81.7% of the data.

• Using the correlated data in our deployment of FlowDNS, we iden-
tify the traffic using malformatted, spam and phishing domains
in Section 5. We observe that 0.5% of the daily traffic volume uses
either malformatted or spam/phish domain names.

• Finally, we formulate our learned lessons in building a real-time
DNS-Netflow Correlation system in Section 6.

2 DATA OVERVIEW

We use flow data and DNS traffic from a Large European ISP. The
flow data is in Netflow format, and we receive both Netflow and
DNS traffic as live streams:

• DNS streams: A set of DNS cache misses gathered from different
customer resolvers. For load-balancing purposes, the data is al-
ready divided into 2 different streams, carrying 75K DNS records
per second on average collectively. Each record in a DNS stream
contains: timestamp,..., [name; rtype; ttl; answer] <0,n>

• Netflow streams: A set of Netflow records captured at the net-
work ingress interfaces. For load-balancing purposes, the data is
already divided into 26 different streams. These streams input 1M
Netflow records per second on average. Each record in a Netflow
stream contains: ..., srcIP, dstIP, ..., timestamp, packet, bytes

We also deploy our system on a smaller European ISP with one
DNS stream carrying 115KDNS records per second and twoNetflow
streams with 138K Netflow records per second.

Each of the above-mentioned streams has an internal buffer to
be used in case the reading speed is less than their actual rate. If
that buffer overflows, the streams start to drop data. Throughout
this paper, wherever we mention loss on the streams, we mean that
the buffers are overflown and start to drop. Therefore, the goal is
to keep the buffer usage stable to avoid any loss.

Reading from multiple streams requiring shared memory access,
and keeping the DNS records in memory to be quickly accessible

makes this correlation challenging in terms of memory and CPU
usage. To overcome these challenges, we leverage different tech-
niques, details of which are explained in Section 3. In accordance
with the data provider agreement, we refrain from reporting the
exact values of the traffic, and all the traffic volume data throughout
the paper is normalized.

3 METHODOLOGY

The goal is to categorize source of the traffic by their service in near
real-time, e.g. to understand what fraction of the traffic is originated
from Netflix, Amazon Prime, Google, etc. To realize this, we look
for the IP address of the Netflow records in the answer section of
the A/AAAA DNS records to find the name it corresponds to. Then
looking at the CNAME records, we search for that name to find the
corresponding CNAME. The results from this correlation are then
correlated with BGP information to find the information such as
source/destination ASes for each service. For the sake of brevity,
in this work, we only focus on DNS-Netflow correlation. We note
that the system is not bound to NetFlow data and can be adapted
to use other data formats containing IP addresses and timestamps
in a configuration file.

3.1 Overview

To perform the DNS-Netflow correlation, as Figure 1 shows, the
DNS streams are received by FillUp workers. Multiple FillUp work-
ers are allocated to each DNS stream to enable parallel processing
of each shard of the DNS stream. These workers analyze the DNS
records and fill up a shared internal storage with the DNS records.
At the same time, the Netflow streams are received by the LookUp
workers. These workers look for the source of the traffic in the
shared internal storage. Again, we assign multiple LookUp workers
to each Netflow stream. In our work, we are interested in analyz-
ing the source of the traffic, hence we use the source IP address.
Nonetheless, destination address or both source and destination
addresses can be used with minor modifications. Then the result
of this lookup is written onto the disk by theWrite workers. Each
worker has an input and output queue which enables the commu-
nication between workers. It is important to avoid that too many
workers write to the same queue, as this contention causes a de-
crease in performance. Since multiple instances of the LookUp
workers will try to simultaneously access a shared data structure
where DNS records are kept, we split the DNS data and distribute
them to different splits to then isolate each split as much as possible.
In Section 4, we discuss whether this further splitting is needed. In
Section 3.2 and Section 3.3, we go through the steps starting from
reading the streams, to fill up the internal storage, and then look
up and write.

We cannot strictly apply DNS records TTL and expire them af-
ter the TTL has passed, since there are multiple levels of caching
and each might apply a different tolerance for expiring the records.
Moreover, applying the actual TTLs on the DNS records requires
regular iterations over all DNS data to check their TTL expiration.
This degrades the performance dramatically and increases the mem-
ory usage (cf. Appendix A.8). On the other hand, we cannot keep
the DNS records forever due to memory constraints. Therefore, we
need to clear up the storage. We observe that 99% of the A/AAAA



FlowDNS: Correlating Netflow and DNS Streams at Scale CoNEXT ’22, December 6–9, 2022, Roma, Italy

DNS Stream

LookUpWorker
FillUpWorker

WriteWorker

Ne�low
 Stream

 

ClearUp
LookUp
FillUp

Ne�low
 Stream

 
Ne�low

 Stream
 

DNS Stream

Write

IP-NAME
Hashmap 

(Long)

IP-NAME
Hashmap 
(Inac�ve)

IP-NAME
Hashmap 
(Ac�ve)

NAME-CNAME
Hashmap 

(Long)

NAME-CNAME
Hashmap 

(Inac�ve)

NAME-CNAME
Hashmap 
(Ac�ve)

Figure 1: FlowDNS correlation architecture.

and CNAME records have a TTL smaller than 3600 and 7200 sec-
onds, respectively (Ref. Appendix A.6). Therefore, we clear up the
A/AAAA records every 3600 seconds, and CNAME records every
7200 seconds. However, since clearing the whole storage will re-
move all the states, we perform buffer rotation before clear-up. The
internal storage where we keep the DNS records is a hashmap with
the DNS answer section as key, and the query name as value. For
implementing these hashmaps, we use the concurrent-map module
in Go [18], which allows for high-performance concurrent reads
and writes by sharding the map.

We add the DNS records in a primary hashmap, i.e., the active
hashmap. After a certain amount of time has passed, we copy the
contents of the active hashmaps into a secondary storage, i.e., the
inactive hashmap, and clear up the active hashmap. In the next clear-
up round, the current contents of the inactive hashmap will be over-
written by the new contents. Active hashmaps are actively updated
with the newly arrived DNS records, while inactive hashmaps are
only updated when the active hashmaps are cleared. A very small
fraction of the DNS records has TTLs longer than the clear-up
interval. Therefore, in case a DNS record’s TTL is larger than a
certain threshold, we put it into specific hashmaps which are never
cleared or are cleared much less frequently, namely, long hashmaps.
Otherwise, it is stored in the active hashmap. From now on, we call
the active/inactive hashmaps for A/AAAA and CNAME records IP-
NAMEactive/inactive, and NAME-CNAMEactive/inactive respectively.
See Appendix A.1 for an overview of the parameters and hashmaps
used in FlowDNS.

3.2 DNS Processing

This part of FlowDNS takes in DNS streams and fills up an internal
shared storage with the DNS records. These records will then be
accessed in the Netflow Processing.

(1) DNS Streams are received by separate threads.
(2) The DNS records go through a filter to check if they are valid
DNS responses.
(3) Valid DNS responses are added to a queue, namely FillUp Queue,
to be then processed each by several FillUp workers. We need this
queue to facilitate the synchronous execution of different workers.
(4) Each FillUp worker picks a DNS response from the FillUp Queue
and if it is an A/AAAA record, labels it based on the IP address.
This label will be used as a hashmap index later on.

(5) The FillUp worker then puts the DNS response in the shared
hashmaps. In all our hashmaps, the key is the answer section, and
the value is the query. We leverage two kinds of hashmaps:
• IP-NAME hashmap:Maps the answer section in an A/AAAA
response, i.e. the IP address, to the queried domain name. We
divide these hashmaps into several splits. We empirically find
that 10 splits are suitable for our scenario. This can change for
any deployment depending on the traffic volume. If, in Step 4,
the IP for an A/AAAA response gets the label n, 0 ≤ n < 10, it
goes to IP-NAMEn.

• NAME-CNAME hashmap: Maps the answer section, i.e. the
domain name, to the queried canonical name for CNAME records.

(6) The FillUp worker keeps track of the timestamp in each DNS
record. If AClearUpInterval seconds has passed, it copies the con-
tents of IP-NAMEactive to IP-NAMEinactive and clears IP-NAMEactive.
If CClearUpInterval seconds is passed, it copies the contents of
NAME-CNAMEactive to NAME-CNAMEinactive and clears NAME-

CNAMEactive.

See Appendix A.2 for the pseudocode of the above algorithm.

3.3 Netflow Processing

In parallel with the DNS processing, this part of FlowDNS takes in
the Netflow streams, takes the source IP address, and looks for this
IP address in the internal shared storage to find the corresponding
domain name. It then writes the results into the output files.

(1) Netflow Streams are received by separate threads.
(2) The Netflow records go through a filter to check if they are
valid Netflow records.
(3) The valid Netflow records are added to the LookUp Queue to
be processed each by several LookUp workers.
(4) Each LookUp worker picks a Netflow record from the LookUp
Queue and labels it based on the srcIP field.
(5) The LookUp worker looks for the srcIP in the IP-NAMEactive n
hashmap, if the label from Step Item 4 is n. If nothing is found, it
looks into the Inactive hashmap, and next into the long hashmap. If
aName is found, the search continues onto the next step. Otherwise,
the search finishes here for that srcIP (result = NULL).
(6) The searchwill be continued inNAME-CNAMEactive n to find the
CNAME for that Name. If a CName is found, the search continues
to the next step. Otherwise, the search continues in the Inactive
and then the long hashmap. If nothing is found, the search finishes
here for that Name (result = Name).
(7) The search in the NAME-CNAME map continues until no fur-
ther CNAME is found or a pre-defined loop limit is reached (result
= CName). Our experiments show that a loop limit of 6 is sufficient
for more than 99% of the records (ref. Appendix A.4). If the result
is found with more than one look-up in NAME-CNAME maps, we
add it to NAME-CNAMEactive for later use.
(8) The result along with the original Netflow is then passed to the
Write Queue to be written in the output file by WriteWorkers.

See Appendix A.3 for the pseudocode. We publish the code for
FlowDNS [14] for future researchers or network operators.

4 EVALUATION

In this section, we evaluate the matching accuracy and performance
metrics for FlowDNS implemented in Go. First, we analyze the final



CoNEXT ’22, December 6–9, 2022, Roma, Italy Maghsoudlou, et al.

version of FlowDNS on a full week of traffic of a large European
ISP. Second, we selectively remove implementation features from
FlowDNS on a one-day traffic capture to understand their impor-
tance by evaluating the effect on matching accuracy, CPU usage,
and memory consumption. We evaluate all the benchmarks on an
Ubuntu 18.04.5 LTS machine with 128 cores and 756 GB RAM. Fig-
ure 2 shows the CPU and memory usage of FlowDNS over one
week when deployed at a large European ISP. In both plots, the
right axis shows the traffic volume to compare the CPU/memory
usage patterns with the traffic load. For all three metricsÐtraffic
volume, memory usage, and CPU usageÐwe can clearly identify
diurnal patterns, with daily peaks in the evening period, a low time
during night hours, and an increase during the day. Note that we
normalize the traffic volume in the right Y-axis. We show CPU
usage as percentages, i.e., every 100% means 1 fully utilized CPU
core. The CPU usage is around 2500% which means roughly 25
CPUs are used. Memory usage also oscillates between 15 GB and 30
GB. In addition to the large European ISP, we also deploy FlowDNS
on a smaller network. On the smaller network, we observe average
memory usage of 6 GB, and CPU usage of around 300%, both fol-
lowing a diurnal pattern. The ratio of CPU usage and number of
flows remains the same in both deployments. The memory usage,
however, is affected by both number of DNS records and number of
parallel threads. This results in lower memory usage in the smaller
network. On both deployments, the results are written to disk by a
maximum delay of 45 seconds, and without any significant loss, i.e.
0.01% loss, on the data stream buffers. The ratio of correlated traffic
to the total traffic, i.e. the correlation rate, is 81.7% on average for
both deployments. We cannot correlate 18.3% of the traffic since (1)
the coverage of our DNS data is only 95%, as discussed later in this
section, and (2) not all the traffic is DNS-related, i.e. not all traffic
has the destination IP address obtained through a DNS query.

Now, we remove the techniques used in the fully featured version
of FlowDNS once at a time, introducing four new benchmarks:

• No Split: The hashmaps are not divided into several splits.
• No Clear-Up: The hashmaps are kept in memory forever.
• No Rotation: The hashmaps are cleared, but no buffer rotation
takes place and no Inactive hashmap exists.

• No Long Hashmaps: The hashmaps are cleared up, and buffer
rotation takes place, but records with large TTLs are also written
in the Active hashmaps, instead of the Long hashmaps.

Figure 3 shows CPU and Memory usage for the above bench-
marks. As expected, memory usage for No Clear-Up grows steadily
over the day and can easily hit the memory limit. The mean corre-
lation rate for this benchmark is 82.8%. The No Rotation benchmark
uses much less memory compared to other benchmarks since it
does not keep a copy of the original contents before clear-up. How-
ever, the average correlation rate for this benchmark is 79.5%. The
No Long Hashmaps save neither a significant amount of memory
nor CPU, yet, with a correlation rate of 81.1%, reduce the correla-
tion rate by 0.6% compared to the Main benchmark. Therefore, the
Long Hashmaps help keep those DNS records from being cleared
up without much cost. The No Split neither improves nor degrades
the memory usage but decreases the CPU usage significantly. This
could be due to the reduced effort to access separate hashmaps si-
multaneously. The average correlation rate is also 81.7%. However,

2200

2300

2400

2500

2600

C
P

U
 U

s
a
g
e
 (

%
)

T
ra

ff
ic

 V
o
lu

m
e

10

20

30

40

50

60

70

25 May 27 May 29 May 31 May

CPU Usage Traffic Volume

(a) CPU usage

15

20

25

30

M
e
m

o
ry

 U
s
a
g
e
 (

G
B

)

T
ra

ff
ic

 V
o
lu

m
e

10

20

30

40

50

60

70

25 May 27 May 29 May 31 May

Memory Usage Traffic Volume

(b) Memory usage

Figure 2: CPU and memory usage forMain benchmark over

a week.

0

500

1000

1500

0 5 10 15 20 25

Time (hour)

C
P

U
 U

s
a
g
e
 (

%
)

Main

NoClearUp

NoLong

NoRotation

NoSplit

(a) CPU usage

0

10

20

30

0 5 10 15 20 25

Time (hour)

M
e
m

o
ry

 U
s
a
g
e
 (

G
B

)

Main

NoClearUp

NoLong

NoRotation

NoSplit

(b) Memory usage

Figure 3: CPU andmemory usage for different variants over

a day.

this should not be interpreted as if sharding the data is not helpful
at all. In contrast, as we have used data sharding already both in our
hashmaps, and in our job queues, explained in Section 3.1. The fact
that this feature does not help as much as the others only shows



FlowDNS: Correlating Netflow and DNS Streams at Scale CoNEXT ’22, December 6–9, 2022, Roma, Italy

that no further splitting is needed in our case. See Appendix A.5
for correlation rates per hour for all the benchmarks.

As we have seen with these four benchmarks, all implemented
features in FlowDNS, except for IP-splitting, help increase the cor-
relation rate while keeping the CPU and memory usage low.

Coverage. FlowDNS receives DNS cache misses gathered from
the clients’ default ISP resolvers. This data is sent from the ISP
resolvers to our collectors via TCP. Therefore, even if the client
uses DNS encryption while still using the default ISP resolver, the
results from FlowDNS are not affected. However, if the clients use
a resolver other than the default ISP resolver, e.g. a public DNS
resolver (e.g., Cloudflare’s 1.1.1.1, Google Public DNS, or Quad9),
the DNS record is not received and therefore, FlowDNS can not
correlate the Netflow traffic for those clients. To understand the
number of DNS records we lose due to clients using public DNS
resolvers, we analyze a sample 1-hour Netflow data and filter DNS
and DoT traffic, i.e. ports 53 and 853. Then, using a public DNS
resolvers list [11] and comparing it with our sample, we observe
that 1 out of every 20 DNS packets is sent to a public DNS resolver.
Therefore, the coverage of our DNS data is 95%.

Accuracy. Earlier in Section 4, we report that the correlation
rate for FlowDNS, i.e. the number of bytes that could be correlated
with any service/domain name compared to the total traffic volume
in bytes, is 81.7% on average. However, this metric does not show
whether the correlated service is the service actually used by the
clients. Since we cannot access the actual domain names used by the
clients, there is no ground truth against which we can compare our
results. Nevertheless, we can estimate the accuracy of FlowDNS, by
pinpointing the scenarios that could result in an incorrect service
correlation and estimate their impact on the system’s accuracy.

In FlowDNS, we keep the DNS data in a hashmap with the IP ad-
dress as the key and domain names as values. Therefore, by design,
observing multiple IP addresses for one domain name in the DNS
data does not affect the accuracy of FlowDNS. However, observing
multiple domain names for one IP address can affect the accuracy.
In case a second domain name is observed with the same IP, i.e.
the same key, the existing (first) domain name is overwritten by
the second domain name, which in turn decreases the accuracy
of our system. To confirm this, we design a small-scale accuracy
analysis using generated traffic data. We browse two different web-
sites and capture the traffic. Then, we extract the DNS packets
from the captured traffic and feed them to FlowDNS as the DNS
stream. We then create Netflow records from all traffic packets and
feed them to FlowDNS as the Netflow stream. Finally, observing
the correlated domain names and comparing them to the actual
scenario, we find whether the system has correlated correctly. We
consider two scenarios for this experiment: (1) Two websites with
different domain names and different IP addresses. (2) Two websites
with different domain names, using the same IP address. In the first
scenario, we observe that all the traffic is correlated correctly, while
in the second scenario, all the traffic is correlated to the second
domain name. In other words, we had an accuracy of 100% and 50%
in the first and second scenarios, respectively.

To estimate the impact of such mislabelling events, we analyze
the domain name distribution per IP address. To this end, we analyze
a 300-second sample of DNS records since as Figure 8 shows, more
than 70% of the DNS records have TTL < 300 seconds. We observe

that 88% of IP addresses are mapped to only a single domain name,
as shown in Figure 9. We also did the analysis with a 1-hour sample
and observed similar results. Therefore, we expect our results to be
accurate for 88% of IP addresses in our flow data.

5 USE CASES

FlowDNS helps ISPs to better plan their networks, while provid-
ing the opportunity to analyze the traffic originated by malicious
IDN homographs and spam domain names. There have been sev-
eral studies on detecting malicious or unwanted domain names
[1, 20, 26, 29], detecting IDN homographs [27, 30, 31], and also
analyzing domain classification services [28]. However, to the best
of our knowledge, there is no work measuring the traffic going
to/originated by these domains. In this section, we illustrate three
example use cases of FlowDNS, measuring the traffic frommalicious
or malformed domain names.

For all the following use cases, we use the correlated traffic for
over a day in a large European ISP, including 39M unique domain
names, and analyze the traffic originated by these domain names.
Network Provisioning and Planning. FlowDNS is already de-
ployed in a large European ISP and a smaller European ISP. The
output from FlowDNS is then correlated with BGP data, e.g. source
AS, destination AS, hand-over AS, etc., to gain more knowledge
about the path the traffic of a specific service takes. Figure 4 shows
the contribution of different source ASes to the traffic volume of
streaming services S1 and S2 over a week at the ISP. As Figure 4a
shows, the traffic corresponding to the streaming service S1 is orig-
inated mostly from only one AS, while the streaming service S2 is
originated mainly by two ASes as shown in Figure 4b. Note that AS
numbers in two figures do not represent the same ASes necessarily.
In Figure 4 we observe a diurnal pattern with slight differences
between the two services. Knowing the source and intermediate
ASes serving a specific service helps ISPs to negotiate with content
providers over using ISP’s resources instead of a third-party CDN.
Also, in case of a broken peering link, it helps find the fallback
paths, if they will be overloaded, and which services are effected.

Spam Domains. Using our 1-day traffic capture, we check the
correlated domain names with the Spamhaus DBL (Domain Block
List) [25] to see if any spamming, phishing or otherwise suspicious
domains are generating any traffic. To avoid bandwidth limitations
on Spamhaus DBL, we sample all the domain names once every
hour, giving ca. 1M domain names, out of which 612 are classified as
suspicious by the Spamhaus DBL. These include 512 spam/generic

bad reputation domains, 41 botnet C&C domains, 34 abused spammed

redirector domains, 11 malware domains, and 3 phishing domains.
Collectively, these suspicious domain names originate multiple
terabytes of traffic. Figure 5 shows a cumulative distribution of
traffic volume per number of domain names for each of the above
categories. In other words, it shows how many domain names
contribute to what fraction of the traffic volume. As can be seen, a
significant amount of traffic comes from spam and botnet domains,
while only a limited number of domain names account for a large
fraction of the traffic.

Malicious websites usually change their domain names rapidly
to avoid being detected. Therefore, spam detection datasets such as
Spamhaus DBL have an expiry date for their labels, i.e. if checked



CoNEXT ’22, December 6–9, 2022, Roma, Italy Maghsoudlou, et al.

(a) Streaming service S1

(b) Streaming service S2

Figure 4: Cumulative traffic volume for streaming service S1

and S2 per source AS.

malware phish spam

abused−redirector botnet mal−formatted

2.
5

5.
0

7.
5

10
.0 1 2 3 4 0

10
0

20
0

30
0

40
0

50
0

0 10 20 30 0 10 20 30 40

0e
+0

0

2e
+0

5

4e
+0

5

6e
+0

5

500

1000

1500

10

20

30

40

50

7.5

10.0

12.5

15.0

0.08

0.09

0.10

0.11

0.12

0.13

0.1

0.2

0.3

0.4

0.5

0.025

0.050

0.075

#Domain Names

C
u
m

u
la

ti
ve

 D
is

tr
ib

u
ti
o
n
 o

f 
T
ra

ff
ic

 V
o
lu

m
e

Figure 5: Cumulative distribution of the traffic volume per

number of domain names.

after the expiry date, they will no longer exist in the dataset and
therefore be labeled as benign. FlowDNS allows for real-time check-
ing of the domain names with such datasets.

Invalid Domain Names. RFC 1035 stipulates specifications of
DNS domain names [16]. In the following analysis, we focus on
three rules to which valid domain names must adhere:

• The total length of the domain name is 255 bytes or less.
• Each label in the domain name is limited to 63 bytes.
• Each label starts with a letter, ends with a letter or digit, and the
interior characters are limited to letters, digits, and hyphens.

The word label refers to each part of the domain name separated by
dots, i.e. if the domain isA.B.C.com, labels are:A,B,C, and com. In our
1-day traffic capture, we observe that 666k domain names violate at

least one of the above-mentioned rules. Figure 5 shows that almost
all the traffic comes from a very limited number of domain names,
and the amount of traffic originated by such domain names is quite
significant. Note that the traffic volume is normalized. The most
common conflict with the above-mentioned rules is disallowed
interior characters. The most common disallowed character found
in 87% of the malformatted domains is the underscore character, i.e.
"_". Finally, we investigate the overlap of invalid domain names with
domains in the spam category and find that only four malformatted
domains also appear in the spam category. To understand how
clients treat these malformed domains, we investigate whether
traffic is being exchanged for these domains. We observe that 2.7%
of the clients which receive traffic from malformed domains, send
traffic back to 23.6% of thesemalformed domains. This bi-directional
traffic accounts for 1.9% of the packets, mostly related to non-web
port numbers, e.g. OpenVPN and Kerberos. All other packets are
originated by malformed domains and receive no answer.

6 LESSONS LEARNED

During the design of FlowDNS, we learned the following lessons:

• When following the CNAME chain, we had to limit the chain
length to 6 due to performance reasons. In our experiments, we
observed that less than 1% of CNAME chains are longer than 6.

• Splitting the data into several shards allows for higher paral-
lelism, while consuming higher CPU for the same amount of
data. Therefore, it is important to keep an eye on this trade-off.

• Buffer rotation, i.e. copying the data once before clearing it, helps
to increase correlation percentage without substantial CPU or
memory usage in the long run. Therefore, it provides a good trade-
off between resource utilization and correlation percentage.

• Expiring DNS records using their exact TTLs induces an unnec-
essary contention over the shared memory making the loss rate
reach over 90%. Using rotating buffers with a common expiry
time instead of the exact value helps in gaining the same correla-
tion rate compared to keeping the DNS records forever, with no
loss and is much more resource-efficient.

We hope that these lessons will prove useful for fellow network
application developers and researchers alike.

7 CONCLUSION

Inferring the services behind a certain traffic flow is not possible
merely by looking at the IP addresses due to the prevalent deploy-
ment of CDNs. In this work, we presented FlowDNS, a system to
correlate DNS and Netflow streams in real-time. We used several
techniques such as splitting the data, rotating buffers, and specific
hashmaps to keep track of longer-living DNS records. We evalu-
ated each of these techniques and confirmed the usefulness of each.
Then, using FlowDNS, we analyzed the domain names with known
datasets to detect malicious domains and observed that a substantial
amount of traffic is originated by these domain names. Moreover,
we checked the adherence of those domain names to standardiza-
tion rules and observed that 1.7% of all the domain names violate
them. The traffic originated by such domains accounts for 0.5% of
the daily traffic. Finally, we plan to make FlowDNS available to
fellow researchers and network operators.



FlowDNS: Correlating Netflow and DNS Streams at Scale CoNEXT ’22, December 6–9, 2022, Roma, Italy

REFERENCES
[1] Sara Afzal, Muhammad Asim, Abdul Rehman Javed, Mirza Omer Beg, and Thar

Baker. 2021. Urldeepdetect: A deep learning approach for detecting malicious
urls using semantic vector models. Journal of Network and Systems Management
29, 3 (2021), 1ś27.

[2] Paul Aitken, Benoît Claise, and Brian Trammell. 2013. Specification of the IP
Flow Information Export (IPFIX) Protocol for the Exchange of Flow Information.
RFC 7011. https://doi.org/10.17487/RFC7011

[3] Ali AlSabeh, Elie Kfoury, Jorge Crichigno, and Elias Bou-Harb. 2022. P4DDPI:
Securing P4-Programmable Data Plane Networks via DNS Deep Packet Inspec-
tion. In Proceedings of the 2022 Network and Distributed System Security (NDSS)
Symposium. 1ś7.

[4] Zhouyu Bao, Wenbo Wang, and Yuqing Lan. 2019. Using Passive DNS to De-
tect Malicious Domain Name. In Proceedings of the 3rd International Conference
on Vision, Image and Signal Processing (Vancouver, BC, Canada) (ICVISP 2019).
Association for Computing Machinery, New York, NY, USA, Article 85, 8 pages.
https://doi.org/10.1145/3387168.3387236

[5] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. 2011. Expo-
sure: Finding malicious domains using passive DNS analysis.. In The Network
and Distributed System Security (NDSS) Symposium. 1ś17.

[6] Xunxun Chen, Gaochao Li, Yongzheng Zhang, Xiao Wu, and Changbo Tian. 2019.
A Deep Learning Based Fast-Flux and CDN Domain Names Recognition Method.
In Proceedings of the 2019 2nd International Conference on Information Science and
Systems (Tokyo, Japan) (ICISS 2019). Association for Computing Machinery, New
York, NY, USA, 54ś59. https://doi.org/10.1145/3322645.3322679

[7] Cisco. 2021. Cisco IOS NetFlow. https://www.cisco.com/c/en/us/products/ios-
nx-os-software/ios-netflow/index.html.

[8] B. Claise (Ed.). 2004. Cisco Systems NetFlow Services Export Version 9. RFC
3954 (Informational). https://doi.org/10.17487/RFC3954

[9] Sean Donovan and Nick Feamster. 2014. Intentional network monitoring: Find-
ing the needle without capturing the haystack. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks. 1ś7.

[10] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel,
and Parisa Tabriz. 2017. Measuring {HTTPS} adoption on the web. In 26th
USENIX Security Symposium (USENIX Security 17). 1323ś1338.

[11] Digineo GmbH. 2022. Public DNS Server List. https://public-dns.info/ Accessed:
2022-10-05.

[12] Jason Kim, Hyojoon Kim, and Jennifer Rexford. 2021. Analyzing traffic by domain
name in the data plane. In Proceedings of the ACM SIGCOMM Symposium on SDN
Research (SOSR). 1ś12.

[13] Hailing Li, Longtao He, Hui Zhang, Kai Zhang, Xiaoqian Li, and Chenghai
He. 2020. CDN-Hosted Domain Detection with Supervised Machine Learning
through DNS Records. In Proceedings of the 2020 The 3rd International Confer-
ence on Information Science and System (Cambridge, United Kingdom) (ICISS
2020). Association for Computing Machinery, New York, NY, USA, 144ś149.
https://doi.org/10.1145/3388176.3388206

[14] A. Maghsoudlou. 2022. FlowDNS: Correlating Netflow and DNS Streams at Scale.
https://github.com/maganiss/FlowDNS Accessed: 2022-10-24.

[15] P. Mockapetris. 1987. Domain names - concepts and facilities. RFC 1034. RFC
Editor. 1ś55 pages. https://www.ietf.org/rfc/rfc1034.txt

[16] P. Mockapetris. 1987. Domain names - implementation and specification. RFC
1035. RFC Editor. 1ś55 pages. https://www.ietf.org/rfc/rfc1035.txt

[17] Giovane C. M. Moura, John Heidemann, Ricardo de O. Schmidt, and Wes
Hardaker. 2019. Cache Me If You Can: Effects of DNS Time-to-Live. In Pro-
ceedings of the Internet Measurement Conference (Amsterdam, Netherlands)
(IMC ’19). Association for Computing Machinery, New York, NY, USA, 101ś115.
https://doi.org/10.1145/3355369.3355568

[18] Orcaman. 2022. A Thread-Safe Concurrent Map for Go. https://github.com/
orcaman/concurrent-map Accessed: 2022-10-16.

[19] Ramakrishna Padmanabhan, John P Rula, Philipp Richter, Stephen D Strowes,
and Alberto Dainotti. 2020. DynamIPs: analyzing address assignment practices
in IPv4 and IPv6. In Proceedings of the 16th International Conference on emerging
Networking EXperiments and Technologies. 55ś70.

[20] Gopinath Palaniappan, Sangeetha S, Balaji Rajendran, Sanjay, Shubham Goyal,
and Bindhumadhava B S. 2020. Malicious Domain Detection Using Machine
Learning On Domain Name Features, Host-Based Features and Web-Based Fea-
tures. Procedia Computer Science 171 (2020), 654ś661. https://doi.org/10.1016/j.
procs.2020.04.071 Third International Conference on Computing and Network
Communications (CoCoNet’19).

[21] Roberto Perdisci, Thomas Papastergiou, Omar Alrawi, and Manos Antonakakis.
2020. Iotfinder: Efficient large-scale identification of iot devices via passive
dns traffic analysis. In 2020 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE Computer Society, 474ś489.

[22] Sivaramakrishnan Ramanathan, Anushah Hossain, Jelena Mirkovic, Minlan Yu,
and Sadia Afroz. 2020. Quantifying the Impact of Blocklisting in the Age of Ad-
dress Reuse. In Proceedings of the ACM Internet Measurement Conference (Virtual
Event, USA) (IMC ’20). Association for Computing Machinery, New York, NY,

USA, 360ś369. https://doi.org/10.1145/3419394.3423657
[23] Audrey Randall, Enze Liu, Gautam Akiwate, Ramakrishna Padmanabhan, Geof-

frey M Voelker, Stefan Savage, and Aaron Schulman. 2020. Trufflehunter: cache
snooping rare domains at large public DNS resolvers. In Proceedings of the ACM
Internet Measurement Conference. 50ś64.

[24] Ernie Regalado. 2014. The Multi-CDN Strategy. https://www.bizety.com/2014/
05/09/multi-cdn-strategy/ Accessed: 2022-06-27.

[25] Spamhaus Project. 2022. Spamhaus DBL. https://www.spamhaus.org/dbl/.
[26] Xiaoqing Sun, Mingkai Tong, Jiahai Yang, Liu Xinran, and Liu Heng. 2019. Hin-

Dom: A Robust Malicious Domain Detection System based on Heterogeneous
Information Network with Transductive Classification. In 22nd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019). USENIX
Association, Chaoyang District, Beijing, 399ś412. https://www.usenix.org/
conference/raid2019/presentation/sun

[27] Hiroaki Suzuki, Daiki Chiba, Yoshiro Yoneya, Tatsuya Mori, and Shigeki Goto.
2019. ShamFinder: An Automated Framework for Detecting IDN Homographs.
In Proceedings of the Internet Measurement Conference (Amsterdam, Netherlands)
(IMC ’19). Association for Computing Machinery, New York, NY, USA, 449ś462.
https://doi.org/10.1145/3355369.3355587

[28] Pelayo Vallina, Victor Le Pochat, Álvaro Feal, Marius Paraschiv, Julien Gamba,
Tim Burke, Oliver Hohlfeld, Juan Tapiador, and Narseo Vallina-Rodriguez. 2020.
Mis-Shapes, Mistakes, Misfits: An Analysis of Domain Classification Services. In
Proceedings of the ACM Internet Measurement Conference (Virtual Event, USA)
(IMC ’20). Association for Computing Machinery, New York, NY, USA, 598ś618.
https://doi.org/10.1145/3419394.3423660

[29] Sandeep Yadav, Ashwath Kumar Krishna Reddy, A.L. Narasimha Reddy, and
Supranamaya Ranjan. 2010. Detecting Algorithmically Generated Malicious
Domain Names. In Proceedings of the 10th ACM SIGCOMM Conference on Inter-
net Measurement (Melbourne, Australia) (IMC ’10). Association for Computing
Machinery, New York, NY, USA, 48ś61. https://doi.org/10.1145/1879141.1879148

[30] Ramin Yazdani, Olivier van der Toorn, and Anna Sperotto. 2020. A Case of
Identity: Detection of Suspicious IDN Homograph Domains Using Active DNS
Measurements. In 2020 IEEE European Symposium on Security and Privacy Work-
shops (EuroSPW). 559ś564. https://doi.org/10.1109/EuroSPW51379.2020.00082

[31] Zicong Zhu, Tran Phuong Thao, Hoang-Quoc Nguyen-Son, Rie Shigetomi Yam-
aguchi, and Toshiyuki Nakata. 2020. Enhancing A New Classification for IDN
Homograph Attack Detection. In 2020 IEEE Intl Conf on Dependable, Autonomic
and Secure Computing. 507ś514. https://doi.org/10.1109/DASC-PICom-CBDCom-
CyberSciTech49142.2020.00093

A APPENDIX

A.1 Parameters and In-memory Storage

Table 1 shows an overview of the parameters and names of the
in-memory storage that we use in FlowDNS. Note that 0 ≦ n <

NUM_SPLIT .

A.2 DNS Processing Pseudocode

Algorithm 1 shows an overview of the fillUpWorker thread which
we mentioned in Section 3.2. This function takes the DNS records
and fills in the hashmap.

A.3 Netflow Processing Pseudocode

Algorithm 2 shows an overview of the lookUpWorker thread which
reads the netflow records, looks them up in the Active, Inactive,
and Long hashmaps and finds the results.

A.4 CNAME Chain Length Distribution

CNAME look-up can sometimes include multiple consequent look-
ups with one CNAME mapping to another more than once. We
studied the CNAME chain length, and as shown in Figure 6, we
observed that more than 99% of the DNS records can be mapped
with a chain of 6 look-ups. Therefore, we limit the number of
CNAME chain look-ups to 6 in FlowDNS.



CoNEXT ’22, December 6–9, 2022, Roma, Italy Maghsoudlou, et al.

Parameter Name Description

AClearUpInterval Time in seconds after which the IP-NAME

hashmap is cleared.
CClearUpInterval Time in seconds after which the NAME-CNAME

hashmap is cleared.
NUM_SPLIT Number of splits for each IP-NAME hashmap.

Storage Name Description

IP-NAMEActive n Hashmap for DNS records with TTL <
AClearUpInterval and label n.

IP-NAMEInactive n Hashmap where the contents of IP-
NAMEActive n are copied to every AClearUpIn-
terval seconds

IP-NAMELong n Hashmap for the new DNS records with TTL
>= AClearUpInterval and label n.

NAME-CNAMEActive Hashmap for the new CNAME responses with
TTL < CClearUpInterval.

NAME-
CNAMEInactive

Hashmap where the contents of NAME-
CNAMEActive are copied to every CClearUpIn-
terval seconds

NAME-CNAMELong Hashmap for the new CNAME responses with
TTL >= CClearUpInterval.

Table 1: Overview of Parameters and Storage Names.

0.00

0.25

0.50

0.75

1.00

1.25

1 3 5 7 9 11 13 15 17

CNAME Chain Length

E
C

D
F

Figure 6: Cumulative distribution of CNAME chain length

over a day.

A.5 Correlation Rate

The correlation rate, i.e. the ratio between correlated traffic and total
traffic is illustrated in Figure 7 for different benchmark variants. The
No Split benchmark excluded from the plot since it has a complete
overlap with theMain benchmark. The top two variants in terms of
correlation rate are Main and NoClearUp. The NoClearUp performs
unacceptable in terms of memory usage. The lowest correlation
rate belongs to NoRotation, which shows the importance of buffer
rotation in FlowDNS.

A.6 DNS Records’ TTLs

To find out the correct number for the clear-up intervals, namely
CClearUpInterval and AClearUpInterval, we investigate the TTLs
for the DNS records. We look at the DNS records’ TTLs over a day

0.75

0.80

0.85

0.90

0 5 10 15 20

Time (Hour)

C
o
rr

e
la

ti
o
n
 R

a
te

 (
%

)

NoClearUp

Main

NoLong

NoRotation

Figure 7: Correlation rate for benchmark variants.

0.00

0.25

0.50

0.75

1.00

60 30
0
60

0

3,
60

0

7,
20

0

18
,0

00

TTL

E
C

D
F

Record Type

A

AAAA

CNAME

Figure 8: Cumulative distribution of TTLs for DNS records

over a day.

at a large Europoean ISP, and find out that 99% of the A/AAAA
and CNAME records have TTL smaller that 3600 and 7200 seconds
respectively, shown in Figure 8. Therefore, in FlowDNS, we set the
clear-up variables as follows:

CClearUpInterval = 7200

AClearUpInterval = 3600

A.7 Number of Domain Names per IP address

We look at a 300-second period of DNS records to investigate the
number of domain names that map to the same IP address leading
to a mislabelling event in FlowDNS. Figure 9 shows the cumulative
distribution of number of domain names per IP address. We observe
that 88% of the DNS records only map to one domain name in
300 seconds. Note that we choose 300 seconds since this is the
TTL for 70% of our DNS records. We also analyze this in a 1-hour
sample of DNS data and observe similar results. Additionally, we
analyze the number of IP addresses per domain name in a 300-
second period of DNS records. We observe that 35% of the domain
names map to more than one IP address. We also analyze this in
a 1-hour sample of DNS records and observe similar results. Note
that observing multiple IP addresses per domain name, which is a
significantly more probable event compared to multiple names for
one IP address,does not effect the accuracy of FlowDNS.



FlowDNS: Correlating Netflow and DNS Streams at Scale CoNEXT ’22, December 6–9, 2022, Roma, Italy

Algorithm 1: DNS Read and Fill-up Overview

Function fillUpWorker DNSRecord d

n = label(d);

if d .rtype is A/AAAA then

if d.ts - lastAClearUpTs >= 3600 then

IpName.Inactive = IpName.Active;

IpName.Active = {};

lastAClearUpTs = d.ts;

end

if d .ttl <= 3600 then

IpName.Active[n][d .answer] = d .query;

else

IpName.Long[n][d .answer] = d .query;

end

else

if d.ts - lastCClearUpTs >= 7200 then

NameCname.Inactive = NameCname.Active;

NameCname.Active = {};

lastCClearUpTs = d.ts;

end

if d .ttl <= 7200 then

NameCname.Active[n][d .answer] = d .query;

else

NameCname.Long[n][d .answer] = d .query;

end

end

Algorithm 2: Netflow Read and Look-up Overview

Function lookUpWorker NetflowRecord nf

n = label(nf);

Name = deepLookUp(nf.srcIP, IpNameObj[n]);

loopCount = 0;

if Name != Null then

results = append(results, Name);

Cname = deepLookUp(Name, NameCnameObj[n]);

while Cname != Null and loopCount <= 6 do

results = append(results, Cname);

loopCount ++;

end

return results;

Def deepLookUp NetflowRecord nf, MapObj hm

Name = NULL;

if nf.srcIP in hm.Active then

Name = hm.Active[nf.srcIP];

else if nf.srcIP in hm.Inactive then

Name = hm.Inactive[nf.srcIP];

else if nf.srcIP in hm.Long then

Name = hm.Long[nf.srcIP];

return Name;

0.88

0.92

0.96

1.00

1 5 9 13 17 21 25 29

#Names per IP

E
C

D
F

Figure 9: Cumulative distribution of number of domain

names per IP address.

A.8 Applying the Exact TTLs

We try applying the exact TTLs from the DNS records on our
correlation, meaning we correlate the IP from a DNS record with
the source IP from the Netflow record only if the DNS record’s
TTL plus its timestamp is less than the timestamp from the Netflow
record which we consider current timestamp. In other words:

TTLdns +Timestampdns < Timestampnetflow

We also run a regular process to clear-up the expired DNS records,
when the above-mentioned condition does not hold. We run this
on the same sources of data, meaning DNS and Netflow streams at
the large European ISP. We observe that the internal buffers of all
the streams start to overload from the very first minutes of running
the above-mentioned system, with the loss rate of over 90% for
both Netflow and DNS streams. We observe that the memory usage
reaches up to 45 GB memory usage after only 1 hour of running
the system. When we compare this to the results from FlowDNS in
Figure 2b, we see that the memory usage is doubled although only
10% of the data is received at the system and others are lost. This
could be due to the regular clear-up process not being fast enough
to clear-up all the expired TTLs as the hashmaps grow, while at the
same time, the contention to access the shared memory is so high
that the performance degrades dramatically.


	Abstract
	1 Introduction
	2 Data Overview
	3 Methodology
	3.1 Overview
	3.2 DNS Processing
	3.3 Netflow Processing

	4 Evaluation
	5 Use Cases
	6 Lessons Learned
	7 Conclusion
	References
	A Appendix
	A.1 Parameters and In-memory Storage
	A.2 DNS Processing Pseudocode
	A.3 Netflow Processing Pseudocode
	A.4 CNAME Chain Length Distribution
	A.5 Correlation Rate
	A.6 DNS Records' TTLs
	A.7 Number of Domain Names per IP address
	A.8 Applying the Exact TTLs


