
From Single Lane to Highways: Analyzing
the Adoption of Multipath TCP in the Internet

Florian Aschenbrenner∗, Tanya Shreedhar†, Oliver Gasser§, Nitinder Mohan∗, Jörg Ott∗
∗TUM Germany †IIIT-Delhi India §MPI-Informatics Germany

Abstract—Multipath TCP (MPTCP) extends traditional TCP
to enable simultaneous use of multiple connection endpoints
at the source and destination. MPTCP has been under active
development since its standardization in 2013, and more recently
in February 2020, MPTCP was upstreamed to the Linux kernel.

In this paper, we provide the first broad analysis of MPTCPv0
in the Internet. We probe the entire IPv4 address space and an
IPv6 hitlist to detect MPTCP-enabled systems operational on
port 80 and 443. Our scans reveal a steady increase in MPTCP-
capable IPs, reaching 9k+ on IPv4 and a few dozen on IPv6. We
also discover a significant share of seemingly MPTCP-capable
hosts, an artifact of middleboxes mirroring TCP options. We
conduct targeted HTTP(S) measurements towards select hosts
and find that middleboxes can aggressively impact the perceived
quality of applications utilizing MPTCP. Finally, we analyze two
complementary traffic traces from CAIDA and MAWI to shed
light on the real-world usage of MPTCP. We find that while
MPTCP usage has increased by a factor of 20 over the past few
years, its traffic share is still quite low.

I. INTRODUCTION

Despite significant advances in Internet infrastructure and
connectivity, TCP’s connectivity model has remained largely
unchanged over the last 30 years. Recent advances in network
technologies have led to the rise of multi-homed devices,
e.g., smartphones, with access to more than one networking
interface. Multipath TCP (MPTCP) is an extension to TCP that
allows endpoints to simultaneously utilize multiple interfaces
for concurrent or backup data transmissions [1]. Standardized
in early 2013, MPTCP has shown better resource utilization,
higher aggregated throughput, and resilience to network fail-
ures in numerous research studies published over the years.

Due to the performance benefits of MPTCP over TCP,
several known organizations have incorporated the protocol
within their products and services. Apple uses MPTCP in its
iOS devices to enhance user experience surrounding its system
services, e.g., Siri, Music, Maps, Wi-Fi Assist [2]. In 2019,
Apple provided APIs to third-party developers for making use
of MPTCP in non-system iOS applications. Korea Telecom,
in partnership with Samsung, uses MPTCP to provide Gigabit
speeds over Wi-Fi and LTE to its customers [3]. In February
2020, MPTCPv1 was upstreamed to Linux and is now avail-
able to all users running Linux 5.6 or newer [4].

Despite significant interest in improving the protocol [1],
[5], [6] , the current state of MPTCP deployment in the Internet
remains largely unexplored in research. We attribute this gap
partially to the influence of middleboxes on the accuracy of
such studies. The Internet is proliferated with a wide spectrum

of specialized appliances and systems known as middleboxes,
that meddles with user traffic before it reaches the target [7].
The intended operation of middleboxes is to offer valuable
benefits, e.g., firewalls drop unintentional packets and prox-
ies improve the performance of connection setup. However,
certain middleboxes interact quite poorly with connections
containing TCP header extensions. While some may strip the
packet of any header additions before relaying it to the next
hop, others might block the connection altogether [8]. Since
MPTCP relies on TCP extensions for signaling, it is also sus-
ceptible to such middleboxes in the Internet. MPTCP designers
incorporate several mechanisms into the protocol specification
that allows the protocol to fall back to regular TCP for data
transfers, if the connection is affected by middleboxes [9].
Despite that, middleboxes continue to hinder MPTCP studies,
since scanning tools leverage the connection establishment
mechanism to interact with targets and thus remain vulnerable
to side-effects of middleboxes. In a study from 2015, the
authors wanted to analyze the deployment of MPTCP in the
Internet, it later became clear that the results include false-
positives due to middleboxes echoing MPTCP options for non-
MPTCP hosts [10]. However, despite significant measurement
challenges, assessing the adoption of MPTCP in-the-wild is
still pertinent since the protocol can only be employed if there
is sufficient server-side support in the Internet.

This paper presents the first broad and multi-faceted as-
sessment of MPTCPv0. We study both the infrastructure, in
terms of MPTCP-capable IPv4 and IPv6 addresses, and the
traffic share at two geographically diverse vantage points. We
identify and remove middleboxes affecting MPTCP in-the-
wild and investigate if they also negatively impact MPTCP
application traffic. Specifically, our contributions are as fol-
lows.

I. We regularly probe the entire IPv4 address space and
an IPv6 hitlist [11] for MPTCPv0 support since July
2020 using ZMap. Our scans target HTTP (port 80) and
HTTPS (port 443) since they make up the largest traffic
share in the Internet [12], [13]. We find that our scans
are affected mainly by middleboxes that echo TCP ex-
tensions, indicating that traditional scanning methods are
still ineffective in accurately evaluating the deployment of
MPTCP. We also observe that the number of IPs reported
to support MPTCP without replayed options increased
fourfold over IPv4 port 443 since 2015.

II. We scrutinize targets that reportedly support MPTCP
in our ZMap scans for middleboxes by using Trace-ISBN 978-3-903176-39-3 © 2021 IFIP



box [14] and make two significant discoveries. First, most
MPTCP-capable hosts in the IPv4 are transient; indicat-
ing experimental connotations attached to MPTCP usage
in-the-wild. Second, we identify several middleboxes that
interact in a much more complicated fashion than just
echoing with MPTCP packets. Despite that, we observe
a growing adoption of MPTCP reaching 7.4k/6.9k and
31/27 over port 80/443 on IPv4 and IPv6, respectively.

III. We initiate parallel HTTP(S) GET requests using MPTCP
and regular TCP towards IPs identified in our ZMap
and Tracebox measurements. Our results show that a
majority of truly MPTCP-capable servers are indifferent
to the choice of transport protocol for connection estab-
lishment. However, IP addresses affected by middleboxes
take longer to successfully establish a connection using
MPTCP vs. TCP, hinting at the potential impact of
middleboxes on MPTCP’s perceived quality.

IV. We analyze usage of MPTCP for data transfers over the
Internet by investigating four years of inter-domain traffic
collected by CAIDA and MAWI. Our findings show that
MPTCP data usage is still quite low compared to TCP
(peaking at 0.4%), primarily due to the lack of widespread
MPTCP support among clients, servers, and applications.
Despite openly supporting MPTCP, Apple’s traffic share
over the protocol is relatively small. However, since the
past year, we observe a steadily rising popularity of
MPTCP for large data transfers.

To foster reproducibility we publish datasets and scripts
for this work [15]. Additionally, we continuously perform
MPTCPv0 and MPTCPv1 scans and publish the results at
https://mptcp.io.

II. BACKGROUND AND RELATED WORK

A. MPTCP Connection Establishment

We first detail the MPTCP connection establishment proce-
dure as our measurement approach utilizes it inherently. We
refer inclined readers to [1], [5] for more details on MPTCP
machinery, features, and design choices.

Figure 1 shows the MPTCPv0 connection establishment
process between an MPTCP-enabled client and server. The
MPTCP handshake mechanism is derived from the TCP three-
way handshake. In addition, MPTCP hosts use a random 64-bit
sequence as keys to authenticate themselves when setting up
new subflows [16]. Moreover, every packet in the handshake
signals MPTCP support through the MP_CAPABLE option.
The client (in our example Bob) initiates a connection by send-
ing a SYN packet containing its key and the MP_CAPABLE
option to the server (Alice). If the server also supports MPTCP,
it replies back with a SYN-ACK including the MP_CAPABLE
option and its own key. According to the specification [16],
both key values in SYN and SYN-ACK are individually
referred to as Bob’s and Alice’s sender’s key. In the first stage
of our study, we use SYN packets to probe hosts that reply
with MP_CAPABLE option in the SYN-ACK; recording their
IP address and sender’s key value (for more details see §III-A).

Bob Alice

SYN MP-CAPABLEACK

Alice's Key

SYN MP-CAPABLE

Bob's Key

ACK MP-CAPABLE

Bob's Key

Alice's Key

M
PTC

P H
andshake

Data

Fig. 1: MPTCPv0 connection establishment process between
two MPTCP-capable endpoints [16].

Bob finally establishes the connection by sending an ACK
with both keys and the MP_CAPABLE option. This allows
regular MPTCP data transmissions between the two par-
ties. Please note that the handshake procedure differs in
MPTCPv1 [9] where Bob does not send its key in the SYN. In
this paper, we study only the deployment of MPTCPv0, and
for deployment results for MPTCPv1 readers are advised to
the webpage: https://mptcp.io.

B. Related Work

Scanning the activity of different protocols in the Internet
has been a long-lasting interest within the network mea-
surement research community. In early 2008, Heidemann et
al. [17] systematically probed a subset of 1% of IPv4 address
space with ICMP pings. The state of active scanning research
was pushed forward significantly by ZMap [18], which allows
researchers to scan the entire IPv4 address space in less than
an hour. Several works have since used the tool to investigate
the deployment of different protocols and applications in the
Internet, e.g., liveness [19], TCP initial window [20], and
QUIC [21]. Others have looked into passive data traces for a
different viewpoint on deployment measurements. Richter et
al. [22] studied the IPv4 activity as observed from within the
Akamai network and show that comparative active scanning
studies miss up to 40% of the hosts that contact the CDN. Qian
et al. [23] analyzed TCP behavior from multiple vantage points
within a large tier-1 ISP. Wan et al. [24] discussed several
factors that can impact the quality of scanning results e.g.,
geo-location, losses, blocking etc. We circumvent these biases
to the best of our abilities by following best practices and
scanning continuously for six months. Please refer to §III-A
for our detailed measurement methodology.

The closest work to ours dates back to 2015 [10]. Mehani
et al. proposed a scanning mechanism that probed every host
on port 80 of the Alexa Top 1M with ZMap and classified IP
addresses that responded with MP_CAPABLE as supporting
MPTCP. Their results indicate that less than 0.1% of scanned

https://mptcp.io
https://mptcp.io


IPv4 ZMap July August September October November December Consistent

Port 80
Responsive Targets 63.9M 58.8M (-8.05%) 57.8M (-1.7%) 61.6M (+6.7%) 61.2M (-0.7%) 61.2M (-0.01%) -

Potential MPTCP 179.5K 201.6K (+12.3%) 197.1K (-2.2%) 196.1K (-0.5%) 205.4K (+4.8%) 206.3K (+0.4%) 139.6K

Different Keys 3.7K 4.1K (+11.1%) 5K (+21.04%) 8.6K (+72.7% 8.6K (-1.01)% 8.6K (+0.8)% 2.6K

Port 443
Responsive Targets 47.9M 42.5M (-11.3%) - 52.9M (+24.6%) 52.7M (-0.3%) 52.6M (-0.2%) -

Potential MPTCP 211.1K 198.1K (-6.1%) - 232.7K (+17.4%) 239.5K (+2.9%) 233.8K (-2.3%) 132.4K

Different Keys 36.6K 33.6K (-8.07%) - 46.4K (+37.9%) 47.1K (+1.6%) 47.5K (+0.9%) 8.4K

TABLE I: Summary of ZMap scans over the IPv4 address space for port 80 and port 443 from July – December 2020. The
“Consistent” column (colored gray) counts the common hosts that are consistently available across the measurement study.

targets support MPTCP, with a majority located in China.
However, the accuracy of the work was later found to be low as
it falsely recognized middleboxes that echoed unknown TCP
extensions as MPTCP hosts [25]. The authors later published
an errata and tracked the non middlebox-affected MPTCP
deployment for several months in 2015. In this work, we
extend their methodology to identify middleboxes affecting
MPTCP correctly, hence providing the most accurate picture
of true MPTCP deployment to date. In addition, our study
scans for MPTCP support over the two most popular services
in the Internet, HTTP and HTTPS, over both IPv4 and IPv6.

III. ACTIVE INTERNET SCANS

To identify support for Multipath TCP in the Internet, we
actively scan for MPTCP options over the IPv4 and IPv6
address space. Our study probes the entire IPv4 address space
over port 80 (≈ 74M unique responsive IPs) and port 443
(≈ 52M unique responsive IPs). In IPv6, we use the IPv6
hitlist [11] to probe both port 80 and port 443 due to the size
of the address space. We find 746k and 544k responsive IPv6
addresses, respectively. Our results are over six months of data
collection from July – December 2020.

A. Methodology

We use ZMap [26] to rapidly enumerate IPv4 and IPv6
addresses. To identify MPTCP hosts, we leverage the ini-
tial handshake mechanism, i.e., sending a SYN with the
MP_CAPABLE flag along with a static sender’s key. As illus-
trated in Figure 1, a legitimate MPTCP host will reply back to
an MPTCP SYN with a SYN-ACK containing MP_CAPABLE
and its own sender’s key. If the target’s SYN-ACK response
includes these values, we classify it as potentially MPTCP-
capable. Previous research has shown that the accuracy of
identifying MPTCP hosts via ZMap can be low due to mid-
dleboxes that replay or strip packets with TCP extensions [8],
[10], [25]. To improve the reliability of our analysis, we
probe potentially MPTCP-capable hosts with the well-known
middlebox-detection tool Tracebox [14]. Tracebox allows us
to detect the presence of MPTCP options modifications on the
path, revealing IPs that truly support MPTCP.

Before conducting active measurements, we incorporate
proposals by Partridge and Allman [27] and Dittrich et al.
[28]. We follow best scanning practices [18] by limiting our
probing rate, maintaining a blocklist, and using dedicated

0 20 40 60
Hamming weight

0.0

0.2

0.4

0.6

0.8

O
cc

ur
re

nc
es

IPv4 TCP/443

N (32, 16)

(a) IPv4 Port 443

0 20 40 60
Hamming weight

0.00

0.05

0.10

0.15

F
re

qu
en

cy

IPv6 TCP/443

N (32, 16)

(b) IPv6 Port 443

Fig. 2: Hamming weight distribution of sender’s keys received
from potential MPTCP-capable hosts in our ZMap scans.

servers with informing rDNS names, websites, and abuse
contacts. Furthermore, we diligently complied to any emails
from organizations asking for their networks to be blacklisted.

B. Finding MPTCP Support In-The-Wild

Table I provides a month-wise summary of our scanning
results over the IPv4 address space. The drop in responsive
targets in August can be attributed to organizations that started
blocking our scans—misidentifying it as a potential attack on
their network. After taking corrective steps, the number of
responsive targets increases again in October. Unfortunately,
we were unable to perform any port 443 scans in September
due to infrastructural reasons.

From almost 60M responsive targets on port 80 and 50M
on port 443 in IPv4, about 200k addresses responded with the
MP_CAPABLE flag in their SYN-ACK (potential MPTCP),
making ≈3.3% and ≈4.6% of total responsive hosts on port
80 and 443, respectively. At first glance, it might seem that
MPTCP is extensively supported, more so on port 443 than
on port 80. However, we also observe that a large percentage
of potential MPTCP hosts are inconsistently active across
our six-month scanning period, signaling at the existence of
transient hosts. In IPv6, we find a very small number of
addresses responding with the MP_CAPABLE option: 43 on
TCP/80 and 165 on TCP/443. Similar to IPv4, we see more
MP CAPABLE addresses on port 443 (0.03%) compared to
port 80 (0.005%). The numbers increase to 44 and 168 until
December 2020 on port 80 and 443, respectively.

Impact of middleboxes on correctness of scans. To examine
if our scans are affected by interfering middleboxes, we



Fig. 3: Unique IPv4 addresses that returned MPTCP options
in our ZMap scans over port 80 and 443 categorized by the
sender’s key. Note that the x-axis is log-scaled.

analyze the MPTCP sender’s key we receive from targets
in their SYN-ACK response. A true MPTCP host generates
a random 64-bit sequence to use as the key (see §II-A).
According to the central limit theorem, the sum of independent
random variables tends toward a normal distribution. In that
case, the sum of all bits in the sender’s key — i.e., the
Hamming weight — should follow the normal distribution
N (32, 16). Figure 2 shows the Hamming weight distribution
of the sender’s key from potential MPTCP hosts on port 443
in IPv4 and IPv6. We find that a large number of sender’s keys
do not follow the normal distribution. In fact, the Hamming
weight 16, i.e., the exact Hamming weight of the key that
we send in our SYN probes, is heavily over-represented. This
indicates a prevalence of middleboxes that mirror MPTCP
options in our ZMap scans. On port 443, the phenomenon
is much more prominent in IPv4, where almost 80% of the
sender’s keys are mirrored compared to ≈8% of keys on IPv6.
On port 80 (not shown), we find that middlebox interference
is even more elevated, with almost 90% and 30% of received
sender’s keys identified as being mirrored for IPv4 and IPv6,
respectively.

We now analyze the share of hosts that are affected by
middleboxes mirroring MPTCP options in our measurements.
Figure 3 shows the aggregate number of unique potential
MPTCP targets scanned over IPv4 for which the sender’s key
was mirrored (in orange) and different from ours (in blue) for
port 80 and 443. It is evident that middleboxes affect ZMap
scans quite significantly as a large percentage of hosts on
both ports have mirrored keys. Interestingly, we find that the
presence of middleboxes is far greater on port 80 than on port
443, as port 80 has 96% of hosts with mirrored keys compared
to 81% on port 443. In contrast, 6484 and 42294 hosts send
back different sender’s keys on port 80 and 443, respectively.
For IPv6, we received different sender’s key responses from
31 IP addresses on port 80 and 157 on port 443 (not shown).

The result is quite intriguing as it hints at HTTPS having
far more support for MPTCP than HTTP over IPv4. We also
investigate whether any hosts that are middlebox-affected on
port 80 are MPTCP-capable on port 443, but we find no
intersection. This leads us to believe the following contrasting
possibilities. First, HTTPS traffic is end-to-end encrypted at
the application layer; it is possible that a large number of

July August September October November December
0

10000

20000

30000

40000

U
ni

qu
e

IP
A

dd
re

ss
es

Port 80 Port 443 Consistent

Fig. 4: Monthly responsive IP addresses with different sender’s
keys for port 80 and 443 over IPv4 using ZMap. The shaded
region denotes IP addresses that also responded previously.

middleboxes do not modify the transport layer options of user
traffic. This results in a much smaller percentage of hosts
that are affected by middleboxes that inject replayed TCP
extensions. Second, the result may still include non-MPTCP
end-hosts, which are affected by middleboxes that also modify
the sender’s key value of SYN-ACK packets.

Takeaway — ZMap includes a large share of seemingly
MPTCP-capable addresses, where middleboxes are mirroring
TCP options. For IPs that responded with different options,
we find potential MPTCP support to lean more towards
HTTPS than HTTP for both IPv4 and IPv6.

C. Finding Interfering Middleboxes

While our ZMap analysis in the previous section filters
out hosts that are affected by middleboxes simply mirroring
TCP options, it still does not entirely capture the true state
of MPTCP deployment in the Internet. First, our filtering
mechanism assumes that all hosts which reply with the same
sender’s key as ours are middlebox-affected and do not support
MPTCP. However, this excludes the possibility of legitimate
MPTCP hosts whose MPTCP options in the SYN-ACK are
either stripped or overwritten by middleboxes—thus resulting
in false negatives. Second, our analysis may also include false
positives due to middleboxes that may perform a complex
operations on packets with extended TCP options, e.g., mod-
ifying sender’s keys. Therefore, we detect the presence of
interfering middleboxes by running Tracebox [14] towards all
targets that sent the MP_CAPABLE option in our ZMap scans.

Methodology. Similar to our ZMap methodology, we issue
Tracebox requests with the MP_CAPABLE option towards
a target address. In the reply, we receive responses from
intermediate routers on the path, including any modifications
made. Overall, we observe the following different behaviors
in Tracebox responses.

I. Only the target IP modifies the MP_CAPABLE option.
II. An intermediate hop modifies the MP_CAPABLE option.

III. The target was unresponsive or the query timed out.
Based on these three categories, we classify MPTCP support

as follows. Since category I responses are caused by IPs



Fig. 5: Tracebox analysis for consistently responsive IPv4 ad-
dresses over port 80/443. The blue region denotes IP addresses
that truly support MPTCP, green are IP addresses affected by
middleboxes on the path, and orange are unreachable.

updating MPTCP options with their own sender’s key in the
SYN-ACK response; we classify such targets as truly MPTCP-
capable. Targets in category II are clearly affected by middle-
boxes on the path and hence tagged as middlebox-affected.
Lastly, we classify hosts in category III as unreachable.

True MPTCP support in the Internet. We check if any of the
end-hosts that mirror our MPTCP key in ZMap (mirrored key
hosts in Figure 3) truly support MPTCP. Interestingly, we did
not find a single end-host that sent back the MP_CAPABLE flag
to our Tracebox probe for both IPv4 and IPv6. This confirms
that our ZMap analysis does not lead to any false negatives,
and checking for mirrored sender’s keys is an effective first
step in filtering out middleboxes.

We continue our analysis with Tracebox responses from
hosts that respond with different sender’s keys in ZMap. We
observe that a large percentage of targets do not respond to our
Tracebox queries and are therefore classified as unreachable.
This behavior is slightly more predominant in IPv4 than
in IPv6, primarily due to the different target sets (Internet-
wide in IPv4, hitlist-based in IPv6). In IPv6, we only see
unreachable hosts on port 443 (≈ 82%), where the majority
of targets are located in the same prefix of a Dutch ISP.
These IPv6 targets respond to our Tracebox queries with
Destination Unreachable (administratively prohibited), which
hints at blocking of our queries by the ISP. In IPv4, the number
of unreachable targets is significantly higher on port 443 (≈
90%) than on port 80 (≈ 48%). As a result, we use consistently
reachable hosts from ZMap scans (corresponding to shaded
regions in Figure 4) for the remaining Tracebox analysis. This
precaution deflates the number of unreachable nodes from
further analysis as it removes transient hosts that are only
active for short periods of time. We confirm that the number
of truly MPTCP-capable addresses remains comparable before
and after pruning transient IPs. Figure 5 shows the overview
of our IPv4 Tracebox analysis for IPv4.

Despite reducing the input dataset, we observe that a large
share of IPv4 targets over port 443 are still unreachable and
the absolute number of responsive addresses is similar on both
port 80 and 443. Contrary to our initial assessment based on
the ZMap results, we find true MPTCP support to be slightly

July August September October November December
0

1200

2400

3600

4800

U
ni

qu
e

IP
A

dd
re

ss
es

Truly-MP Middlebox Port 80 Port 443

Fig. 6: Monthly distribution of IPv4 addresses over port 80
and 443 that responded to our Tracebox queries.

higher on port 80 (7.5k hosts) than on port 443 (6.9k hosts).
Furthermore, the end-to-end encrypted nature of HTTPS does
not seem to prevent middleboxes to interfere with traffic on the
path as the number of middlebox-affected hosts is ≈ 3× larger
on port 443 compared to port 80. In IPv6, we find not a single
middlebox-affected target address. In fact, after removing the
large share of unresponsive port 443 addresses, the number of
true MPTCP-capable targets is similar on both protocols: 31
on TCP/80 and 27 on TCP/443.

Figure 6 shows the monthly distribution of truly MPTCP-
capable IPv4 addresses. In IPv6, the number of MPTCP-
capable addresses remains almost constant during the study
period, varying only by a maximum of two addresses. We
observe that the support for MPTCP on IPv4 has been steadily
increasing for both port 80 and 443 and almost doubled for
port 80 over our six months study period. As of December
2020, we identify almost ≈ 5.5k and ≈ 4.5k active MPTCP-
capable IPv4 addresses on port 80 and 443, respectively.
Compared to 7.5k and 6.8k true MPTCP hosts reported across
six months (see Figure 5), the monthly distribution suggests
significant transience in the MPTCP deployment. We likely at-
tribute these short-lived hosts to enthusiasts, system tinkerers,
or researchers that may use MPTCP for short time periods. The
monthly Tracebox results are also in stark contrast to ZMap
results discussed earlier (see Figure 4) as the MPTCP support
over port 80 exceeds port 443 in October 2020.

We also observe that the number of middlebox-affected
hosts remains almost consistent across months, hinting at
an unvarying set of IPv4 addresses affected by interfering
middleboxes on the path. Of the 402 and 1.27k middlebox-
affected end-hosts on port 80 and 443, only 6 are found to truly
support MPTCP. However, since MPTCP options are stripped
for a large fraction of middlebox-affected end-hosts, we cannot
accurately assess the true support for MPTCP within this
group. We attempt to investigate the deployment nature of
middleboxes that impact MPTCP traffic using Nmap [29]
fingerprinting. Unfortunately, this did not lead to fruitful
results due to the following hindrances. First, the majority of
middleboxes that impact our study do not respond to Tracebox
probes, and hence we are unable to identify their IP address.
Second, for the handful of middleboxes that we positively
identified, the accuracy of Nmap is too low (around 85%)



Fig. 7: MPTCP support for HTTP and HTTPS in IPv4/v6.

Port 80

Port 443

3188

4051

348

1393

911

742

433

430

215

262

132

218

9

228

83

152

166

61

135

114

48.1%

3.4% 2.7% 2.1% 1.7%

13.3%
9.1%

4.7%
1.6% 1.5%

Fig. 8: Geographic distribution of truly MPTCP-capable IPv4
addresses verified by Tracebox. The bars show counts of
unique IPs over both port 80 and 443 (including common IPs).
The numbers below the x-axis denote the MPTCP-capable IPs
serving over port 80 and 443 in that country.

to confidently identify their hardware and OS characteristics.
While most middleboxes are geo-located in China (the rest
being located in Asia, North America, and Europe), their AS
information does not reveal any defining traits or common-
alities between organizations managing them. We leave the
thorough analysis of such middleboxes to future work.

Since an MPTCP-capable machine can offer different ser-
vices concurrently, we now examine the overlap between
TCP/80 and TCP/443 end-hosts. Figure 7 shows the port
breakup of all truly MPTCP-capable IP addresses throughout
our study, including transient IP addresses. As shown in
the figure, most IPv4 MPTCP hosts provide complementary
services over either of the ports. Only 16.4% of IPv4 addresses
support MPTCP over both port 80 and 443, while 22.3%
only support MPTCP over HTTP and 61% over HTTPS. The
picture is very different for IPv6, where more than 80% of
addresses support MPTCP on both ports.

Geo-distribution of MPTCP-capable hosts. We now shed
some light on the physical deployment locations and opera-
tional zones of end-hosts that truly support MPTCP. Figure 8
visualizes the top 10 countries with the most MPTCP-capable
host densities on IPv4, arranged in decreasing fashion. We
use the MaxMind database [30] for our analysis and only
show country-level breakup since more fine-granular IP geo-
location is not very accurate [31]–[33]. Table II provides
further insights, as it shows the top 10 ASes with most IPv4

ASN #Port80 #Port443 Rank Country Owner
6185 30 1457 13577 US Apple Inc.
1221 255 1286 76 AU Telstra Corp.
61157 674 499 1368 DE Plus Server
7922 486 284 27 US Comcast
4766 406 403 47 KR Korea Telecom
714 197 335 6630 US Apple Inc.
20115 239 205 98 US Charter Comm.
18516 239 3 15189 US Molalla Comm.
18943 172 207 3855 US Yelcot Teleph.
5607 116 116 5033 GB Sky UK Corp.

TABLE II: Top 10 Autonomous Systems for truly MPTCP-
enabled hosts in IPv4.

ASN #Port80 #Port443 Rank Country Owner
16276 5 5 3623 FR OVH
7922 4 4 30 US Comcast
12876 4 3 10887 FR Online S.A.S.
63949 3 2 6706 US Linode
201155 2 2 25511 CH embeDD
174 2 2 4 US Cogent

TABLE III: Top 6 Autonomous Systems for truly MPTCP-
enabled hosts in IPv6.

MPTCP hosts on port 80 and 443. The table also lists the
associated organization name, country and AS rank, which
we obtain from CAIDA’s AS database [34].

We find that almost half of all IPv4 MPTCP hosts are
deployed in the US and the country dominates its closest
competitors with a total of 5300 unique MPTCP-capable
hosts. Table II shows that with the US, Apple has the largest
deployment of MPTCP servers operational on both port 80 and
443, totaling more than 2000 unique IPv4 addresses. The result
is unsurprising since Apple has been known to publicly use
MPTCP for several iOS services, e.g., Siri, Music, Maps, and
has recently allowed third-party developers to utilize MPTCP
for non-system-native apps [2]. The second-largest support
for MPTCP over IPv4 comes from Australia, mainly due to
servers hosted by Telstra, a major telecommunications com-
pany in the region. We observe that many network operators
and ISPs across the globe are utilizing MPTCP within their
networks to enhance several of their client-facing services. For
example, Korea Telecom, in partnership with Samsung, uses
MPTCP to provide Gigabit speeds over Wi-Fi and LTE [3].
Interestingly, we also observe from Figure 8 that in certain
countries such as Austria and France, MPTCP deployment
favors one port over the other, showcasing an organization’s
tendency to utilize MPTCP for serving specific application
traffic. In Table III we show the AS distribution of truly
MPTCP-capable IPv6 addresses. Compared to IPv4, MPTCP
support in IPv6 is much more evenly distributed over ASes.
We find that most of the small number of MPTCP hosts in
IPv6 are located in hosting providers and ISPs. Overall, we
find that the current MPTCP deployment spans more than 80
countries across the globe.



(a) (b)

(c) (d)

Fig. 9: HTTP(S) GET timing deltas over MPTCP and TCP
towards: truly-MPTCP targets on port 80 (a) and port 443 (b);
MPTCP targets affected by middleboxes via Tracebox (c); and
targets affected by mirroring middleboxes (d). Please note the
different x-axis time scale.

Takeaway — Using Tracebox we find a large share of
middlebox-affected MPTCP addresses in IPv4, while IPv6
MPTCP support remains largely unaffected. Backed by
Apple and major ISPs globally, IPv4 boasts of 9k+ truly
MPTCP-capable hosts, compared to a few dozen on IPv6.

D. Middlebox Impact on MPTCP Perceived Quality

Our analysis in §III-C revealed a widespread prevalence
of middleboxes that modify extensions MPTCP relies on.
Previous research has shown that certain middleboxes, such
as firewalls or load balancers, manipulate packets that do not
fit pre-defined rule sets, e.g., by marking them low-priority
or forwarding them on longer paths [8]. In this section, we
want to answer whether middleboxes treat MPTCP application
traffic any different from regular TCP traffic.

We investigate this by initiating HTTP(S) GET requests
using MPTCP from AWS in Germany towards IPv4 addresses
that are marked potential-MPTCP in §III-B. We conduct the
same measurements over regular TCP from the same data
center in parallel. For each successful GET response, we
record (1) the TCP handshake time (a.k.a. connect time),
(2) the TLS handshake time, (3) time to first byte (TTFB),
and (4) the total completion time (roughly equates to website
load time). We run each measurement set, composed of 10+
runs, for almost two weeks. Overall, ≈ 80% and ≈ 27%
targets responded to our GET requests on port 80 and 443,
respectively.

Figures 9a and 9b show the distribution of ∆ time dif-
ference between responses from truly MPTCP IPs identified
in §III-C. Keep in mind that these targets are not affected
by middleboxes on the path. ∆ values less than zero denote

targets that are faster using MPTCP while ∆ > 0 are hosts that
are faster over TCP. Values centered around zero indicate that
both protocols perform similarly. The symmetric upper and
lower distributions in Figure 9a shows that the clients observe
no discernible difference using (MP)TCP if connecting to
targets that support MPTCP over port 80. MPTCP-capable
targets on port 443 (shown in Figure 9b) show similar results
for all timing values except completion time, for which the
distribution tilts slightly in favor of TCP.

We now investigate the impact of middleboxes on MPTCP
traffic. In Figure 9c we show the responses from MPTCP-
capable targets found to be affected by middleboxes. As can
be observed, middleboxes treat MPTCP application traffic
differently. For ≈30% of all timing values, MPTCP is slower
than TCP while TCP is slower for only 10% of measurements.
Notice the difference in x-axis ticks of Figure 9c and Fig-
ure 9a; indicating that middleboxes can expand TTFB and
load time of MPTCP connections by several seconds. Likely,
the MPTCP client falls back to TCP before initiating data
transfer for these targets since middleboxes strip away MPTCP
options from the header [9]. As a result, such middleboxes
only affect the TCP handshake phase, which also justifies large
connect time values recorded for these targets. However, not
all middleboxes have a deleterious impact on MPTCP traffic,
as seen in Figure 9d. The result shows that middleboxes that
simply replay unknown TCP extensions have no discernible
effect on MPTCP traffic. Keep in mind that data transfers over
these connections end up using TCP since none of the end-
targets in this group were found to support MPTCP.

Takeaway — We observe no significant difference in
HTTP(S) GET responses when using MPTCP over TCP
from truly MPTCP-capable servers. However, we find that
certain middleboxes can aggressively delay MPTCP connec-
tions, whereas TCP remains largely unaffected.

IV. MPTCP INTERNET TRAFFIC SHARE

We quantify the real-world MPTCP traffic share by ana-
lyzing two traffic traces from geographically diverse vantage
points: (1) four years of traffic (from 2015 to 2019) on a Tier 1
ISP backbone link in North America (CAIDA traces [35]) and
(2) seven years of traffic (from 2014 to 2020) captured at the
uplink of a Japanese university network (MAWI traces [36])
CAIDA. The CAIDA dataset includes bidirectional traffic
captured at an Equinix data center connected to an ISP
backbone link (we only consider single direction “dir-A” traffic
in our analysis). For 2015 and 2016, the monitor captures
traffic of the ISP backbone connecting Chicago and Seattle,
while for 2018 and 2019, the backbone links New York and
São Paolo. The dataset includes a one-hour trace per month for
four months of 2015 and 2016 each, ten months for 2018 and
January 2019. No data is available for 2017 and after January
2019 since the monitored links have been upgraded to 100
Gbps and exceed capturing capacity.
MAWI. The MAWI dataset includes traffic captured at
samplepoint-F, a 1 Gbps transit link of the WIDE working



2015
2016

2018
2019

0

1

2

M
P

T
C

P
sh

ar
e

×10−4

Flow Share

Byte Share

(a) MPTCP traffic share.

2015
2016

2017
2018

2019
0

2

4

6

T
ra

ffi
c

[B
yt

es
]

×106

0.0

0.5

1.0

T
ra

ffi
c

[F
lo

w
s]

×103

MPTCP bytes

MPTCP flows

(b) MPTCP absolute traffic.

Fig. 10: MPTCP traffic over time captured by CAIDA mon-
itors on direction-A. (a) shows share of MPTCP flows and
bytes (compared to TCP) and (b) shows their absolute values
across time. The gap is due to missing data for 2017.

group to an upstream ISP. We analyze 15 minute captures
of the third Thursday of each month, from January 2014 to
December 2020. This technique allows for better comparison
between months, ensuring that weekday traffic is analyzed.

Both CAIDA and MAWI datasets are anonymized, disallow-
ing us to identify participating endpoints accurately. However,
since our objective is to understand the popularity of MPTCP
in real-world Internet traffic, this does not hinder our analysis.
We remove all flows with less than five packet exchanges to
prevent possible scanning traffic from influencing our study.

A. MPTCP Traffic Characteristics

Figures 10a and 11a show the share of MPTCP flows and
bytes over TCP at the CAIDA and MAWI vantage points,
respectively. We observe that the MPTCP share remains fairly
and consistently low in the CAIDA dataset, making up only
0.00006% of TCP byte and 0.0003% of TCP flow traffic.
However, there is a clear uptick in MPTCP flow share at the
start of 2018 that increases as the year progresses, reaching
0.005%. Interestingly, the trend is mostly missing on MPTCP
byte share, indicating a simultaneous rise of TCP traffic on
the link. By the end of 2018 (and beginning of 2019), both
MPTCP flow and byte share within the CAIDA dataset esca-
late significantly and peak at 0.02% and 0.002%, respectively.
Figure 10b paints the complementary picture of the dataset
in absolute numbers. The bars (attached to the left y-axis)
denote the aggregate amount of MPTCP bytes, and the line
(to the right y-axis) shows the mean of MPTCP flows over
four years. We observe a ≈ 8.6× jump in MPTCP bytes
from 2016–2018 and an increase of 64% within 2018–2019.
However, the concurrent increase in the number of MPTCP
flows hints that MPTCP is largely being used for short-lived
mice transfers. Unfortunately, we cannot analyze the after-
effects of MPTCP upstreaming in Linux at the beginning of
2020 from the CAIDA dataset as no trace data is available
beyond 2019. Hence we turn our attention to the MAWI traces.

From Figure 11a we observe that the share of MPTCP traffic
flows captured by MAWI stays relatively constant over time,
making up less than 0.1% of all TCP traffic flows. The share
of MPTCP bytes is even smaller, until the end of 2019, as
we begin to see it increase significantly, peaking at upwards

(a) MPTCP traffic share.

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

0.0

0.5

1.0

B
yt

e
sh

ar
e

of
to

p
X

flo
w

s

Top 1

Top 5

Top 50%

(b) MPTCP flow size distribution.

Fig. 11: MPTCP traffic over time at MAWI’s samplepoint-
F. (a) shows the share of MPTCP traffic (in bytes and flow)
compared to TCP and (b) shows traffic share of top 1, top 5,
and top 50% flows compared to all MPTCP traffic.

of 0.4% in June 2020. Interestingly, the number of flows
remains low and does not increase. We further investigate this
phenomenon by looking at the flow size distribution over time.
To convey this distribution, we show the traffic share of the top
flow, the top five flows, and the top 50% of flows in Figure 11b.
If all flows had the same size, the green top 50% line would be
at 0.5. Right around the end of 2019, we see a drastic change
in flow size distributions. A single flow makes up 50% of all
MPTCP traffic at times, and the top five flows make up almost
all of MPTCP traffic. This indicates that MPTCP is starting to
be used and carries actual data. We also evaluate the duration
of these elephant flows and find that they last about 30s. That
relatively short duration also explains the few dips in the top
5 in 2020 as seen in Figure 11a. If an elephant MPTCP flow
is not present within MAWI’s 15 min capturing window, the
distribution and traffic share drops.

B. MPTCP Application Usage

To better understand the applications used in MPTCP traffic,
we map transport port numbers for MAWI and CAIDA traces
to well-known port numbers used for specific services [37].
Additionally, we leverage Apple’s list of ports used in their
services to identify Apple service traffic [38]. We are able
to successfully map all flows to well-known ports in MAWI;
except one flow with both high-ports and two flows with
reserved value zero as the source port. The latter could be
attributed to misconfigured devices [39]. For CAIDA, we find
more than 80% of source ports in the well-known range and a
majority of destination ports as ephemeral; indicating that the
link mostly carries server-to-client upstream traffic.

Overall, we observe six different applications utilizing
MPTCP in MAWI: HTTPS, HTTP, Ident, SMB, Siri, and RDP.
The overwhelming majority of all MPTCP traffic, however,
is HTTPS traffic, whose lowest share is 99.5%. On the other
hand, the application mix in the CAIDA dataset is more diverse
than MAWI as we find 15+ services using MPTCP; including
HTTPS, HTTP, Spamtrap, and Microsoft services. However,
similar to MAWI, HTTPS traffic eclipses all other applications
with 99.91% being its lowest share. Moreover, other than very
small traces of Siri in 2018, we did not discover any other
instances of Apple services using MPTCP in both datasets.



Takeaway — The MPTCP traffic share remains consistently
low over time. Since mid 2019, MPTCP traffic has shown
a steady increase and now includes larger flows, indicating
that MPTCP has started to see actual deployment. With more
than 99% of all MPTCP traffic, HTTPS is the dominant
application using MPTCP in-the-wild.

V. DISCUSSION AND CONCLUSION

This paper presented the first broad multi-faceted assess-
ment on MPTCPv0. We studied both the infrastructure, by
probing the entire IPv4 address space and an IPv6 hitlist for
MPTCP-capable IPs, and traffic share at two geographically
diverse vantage points. We identified middleboxes that impact
both MPTCP scanning attempts and user traffic during the
course of our study, hence providing the most accurate picture
of true MPTCP deployment to date. We observed a steady
growth in MPTCP-enabled IPs that support HTTP and HTTPS
in our six-month investigation period, reaching ≈ 9k and 30+
in December 2020 for IPv4 and IPv6, respectively. The growth
is primarily driven by Apple and ISPs across the globe that
rely on the protocol to enhance their services.

The rise in infrastructure size is not yet reflected in
MPTCP’s traffic share as MPTCP’s byte share peaks at a low
0.4%, however showing an apparent increase in 2020. Com-
bined with MPTCP’s susceptibility to middleboxes, the path
to wide-spread adoption of the protocol encounters several
roadblocks. We identified the presence of middleboxes, which
can aggressively degrade the perceived quality of applications
employing MPTCP. Compare it to multipath alternatives being
developed in parallel using substrates such as QUIC that
remain largely unaffected by middleboxes, the popularity of
MPTCP in the future is still unknown. Interestingly, MPTCP
seems to encounter fewer hurdles over IPv6 compared to IPv4,
as the new Internet Protocol lacks middleboxes that interfere
with the protocol’s operation. We envision the wide-spread
adoption of MPTCP to be possible only if it is embraced
by both middlebox developers and service-providing organi-
zations simultaneously.
Limitations: In this study, we focus on the evaluation of
MPTCPv0 deployments over the Internet. Our methodology
does not capture client-side MPTCP deployments, including
MPTCP proxy solutions that work only when the client
establishes an MPTCP connection. The passive data analysis
(cf. §IV) only focuses on MPTCP support and not MPTCP
usage. We plan to plug these limitations in a future study, with
MPTCPv1 results being already available at https://mptcp.io.
Acknowledgments: We thank the reviewers and Olivier
Bonaventure for the feedback and comments on this paper.

REFERENCES

[1] O. Bonaventure et al., “An Overview of Multipath TCP,” ; login:, 2012.
[2] Apple. (2017) Use Multipath TCP to create backup connections for

iOS. [Online]. Available: https://support.apple.com/en-us/HT201373
[3] Android Authority. (2015) South Korea’s KT launches 1.17Gbps

GiGA LTE. [Online]. Available: https://www.androidauthority.com/kt-
launches-1gbps-giga-lte-617147/

[4] Netdev Group. (2020) MPTCP Linux kernel upstream. [Online]. Avail-
able: https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/
commit/?id=f870fa0b5768842cb4690c1c11f19f28b731ae6d

[5] C. Paasch et al., “Experimental Evaluation of Multipath TCP Sched-
ulers,” in ACM SIGCOMM Workshop on Capacity Sharing, 2014.

[6] T. Shreedhar et al., “QAware: A Cross-Layer Approach to MPTCP
Scheduling,” in IFIP Networking, 2018.

[7] J. Sherry et al., “Making Middleboxes Someone Else’s Problem: Net-
work Processing as a Cloud Service,” ACM SIGCOMM CCR, 2012.

[8] B. Hesmans et al., “Are TCP Extensions Middlebox-proof?” in ACM
HotMiddlebox, 2013.

[9] A. Ford et al., “RFC 8684: TCP Extensions for Multipath Operation
with Multiple Addresses.”

[10] O. Mehani et al., “An Early Look at Multipath TCP Deployment in the
Wild,” in ACM HotPlanet, 2015.

[11] O. Gasser et al., “Clusters in the Expanse: Understanding and Unbiasing
IPv6 Hitlists,” in ACM IMC, 2018.

[12] M. Trevisan et al., “Five Years at the Edge: Watching Internet From the
ISP Network,” IEEE/ACM ToN, 2020.

[13] A. Feldmann et al., “The Lockdown Effect: Implications of the COVID-
19 Pandemic on Internet Traffic,” in ACM IMC, 2020.

[14] G. Detal et al., “Revealing Middlebox Interference with Tracebox,” in
ACM IMC, 2013.

[15] F. Aschenbrenner et al. (2021) Dataset: From Single Lane to Highways:
Analyzing the Adoption of Multipath TCP in the Internet. [Online].
Available: https://doi.org/10.14459/2021mp1610028

[16] A. Ford et al., “RFC 6824: TCP Extensions for Multipath Operation
with Multiple Addresses.”

[17] J. Heidemann et al., “Census and Survey of the Visible Internet,” in
ACM IMC, 2008.

[18] Z. Durumeric et al., “ZMap: Fast Internet-wide Scanning and Its Security
Applications,” in USENIX Security Symposium, 2013.

[19] S. Bano et al., “Scanning the Internet for Liveness,” ACM SIGCOMM
CCR, 2018.

[20] J. Rüth et al., “Large-Scale Scanning of TCP’s Initial Window,” in IMC,
2017.

[21] J. Rüth et al., “A First Look at QUIC in the Wild,” in PAM, 2018.
[22] P. Richter et al., “Beyond Counting: New Perspectives on the Active

IPv4 Address Space,” in ACM IMC, 2016.
[23] F. Qian et al., “TCP Revisited: A Fresh Look at TCP in the Wild,” in

ACM IMC, 2009.
[24] G. Wan et al., “On the Origin of Scanning: The Impact of Location on

Internet-Wide Scans,” in ACM IMC, 2020.
[25] O. Bonaventure. (2015) Measuring the adoption of Multipath

TCP is not so simple... [Online]. Available: http://blog.multipath-
tcp.org/blog/html/2015/10/27/adoption.html

[26] TUM. (2015) ZMap: The Internet Scanner. [Online]. Available:
https://github.com/tumi8/zmap

[27] C. Partridge and M. Allman, “Ethical Considerations in Network Mea-
surement Papers,” Communications of the ACM, 2016.

[28] D. Dittrich et al., “The Menlo Report: Ethical Principles Guiding
Information and Communication Technology Research,” US DHS, 2012.

[29] G. Lyon. (2020) Nmap. [Online]. Available: https://nmap.org/
[30] MaxMind. (2020) GeoLite2 Free Geolocation Data. [Online]. Available:

https://dev.maxmind.com/geoip/geoip2/geolite2/
[31] I. Livadariu et al., “On the Accuracy of Country-Level IP Geolocation,”

in ANRW, 2020.
[32] Q. Scheitle et al., “HLOC: Hints-Based Geolocation Leveraging Multi-

ple Measurement Frameworks,” in TMA, 2017.
[33] Y. Shavitt and N. Zilberman, “A Geolocation Databases Study,” IEEE

JSAC, 2011.
[34] CAIDA. (2020) ASRank. [Online]. Available: https://asrank.caida.org/
[35] CAIDA, “Anonymized Internet Traces Dataset,” 2020. [Online].

Available: https://www.caida.org/data/passive/passive dataset.xml
[36] MAWI Working Group, “MAWI Working Group Traffic Archive,”

2020. [Online]. Available: http://mawi.wide.ad.jp/mawi/
[37] IANA, “Service Name and Transport Protocol Port Number Registry,”

2020. [Online]. Available: https://www.iana.org/assignments/service-
names-port-numbers/service-names-port-numbers.xhtml

[38] Apple, “TCP and UDP ports used by Apple software products,” 2020.
[Online]. Available: https://support.apple.com/en-us/HT202944

[39] A. Maghsoudlou et al., “Zeroing in on Port 0 Traffic in the Wild,” in
PAM, 2021.

https://mptcp.io
https://support.apple.com/en-us/HT201373
https://www.androidauthority.com/kt-launches-1gbps-giga-lte-617147/
https://www.androidauthority.com/kt-launches-1gbps-giga-lte-617147/
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=f870fa0b5768842cb4690c1c11f19f28b731ae6d
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=f870fa0b5768842cb4690c1c11f19f28b731ae6d
https://doi.org/10.14459/2021mp1610028
http://blog.multipath-tcp.org/blog/html/2015/10/27/adoption.html
http://blog.multipath-tcp.org/blog/html/2015/10/27/adoption.html
https://github.com/tumi8/zmap
https://nmap.org/
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://asrank.caida.org/
https://www.caida.org/data/passive/passive_dataset.xml
http://mawi.wide.ad.jp/mawi/
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://support.apple.com/en-us/HT202944

	Introduction
	Background and Related Work
	MPTCP Connection Establishment
	Related Work

	Active Internet Scans
	Methodology
	Finding MPTCP Support In-The-Wild
	Finding Interfering Middleboxes
	Middlebox Impact on MPTCP Perceived Quality

	MPTCP Internet Traffic Share
	MPTCP Traffic Characteristics
	MPTCP Application Usage

	Discussion and Conclusion
	References

